
 
 
 

 
 
 

THÈSE PRÉSENTÉE  

POUR OBTENIR LE GRADE DE 
 

DOCTEUR DE 
 

L’UNIVERSITÉ DE BORDEAUX 

 

ÉCOLE DOCTORALE  « SCIENCES ET ENVIRONNEMENTS » 

Spécialité : écologie évolutive, fonctionnelle et des communautés 

 
 

Par Patrick AL HAYEK 
 
 

Role of environmental plasticity and adaptation of nurse species 
from the subalpine and oromediterranean zones of the Pyrenees 

and the Mount-Lebanon for alpine communities structure 
 

Sous la direction de : MICHALET Richard 
co-directeur : TOUZARD Blaise 

 
 
 
 
Soutenue le 16 octobre 2014 
 
 
Membres du jury : 
 
ANTHELME Fabien (CR HDR, IRD Montpellier)   Rapporteur 
CHOLER Philippe (CR HDR, CNRS Grenoble)   Rapporteur 
GARABÉTIAN Frédéric (Pr., Université de Bordeaux)  Président - Examinateur 
MÉDAIL Frédéric (Pr., Aix-Marseille Université)   Examinateur 
TOUZARD Blaise (MCU HDR, Université de Bordeaux)  Directeur de thèse 
MICHALET Richard (Pr., Université de Bordeaux)  Directeur de thèse 



Titre : Rôle de la plasticité environnementale et de l’adaptation d’espèces nurses 
des étages subalpins et oroméditerranéens des Pyrénées et du Mont-Liban pour la 
structure des communautés alpines 

Résumé : Les plantes en coussins sont connues pour leur capacité fondatrice de 
nouvel habitat pour les autres espèces. Par ailleurs, des études ont montré que la 
variation morphologique au sein d’espèces fondatrices peut induire une variation des 
effets compétiteurs sur les espèces subordonnées, ce qui peut affecter la 
composition des communautés. Cette thèse a pour objectif d’étudier les 
conséquences d’une variation intraspécifique de deux espèces fondatrices (Festuca 
gautieri et Onobrychis cornuta) occupant des micro-environnements contrastés dans 
deux systèmes montagneux [les Pyrénées (France) et le Mont-Liban (Liban), 
respectivement] sur les communautés végétales associées (subalpines et 
oroméditerranéennes, respectivement). Nous avons évalué par des approches 
descriptives et/ou expérimentales (jardins expérimentaux, transplantations 
réciproques) les contributions de la génétique et de la plasticité à la variation 
morphologique entre deux phénotypes de coussins (dense et lâche) pour chaque 
espèce fondatrice, et à leurs effets contrastés sur les espèces subordonnées. Nous 
avons également quantifié les effets rétroactifs de la communauté pour la 
reproduction des espèces fondatrices. Nos résultats montrent une contribution à la 
fois de la génétique et de la plasticité à la variation phénotypique. La base génétique 
des variations morphologiques entre les phénotypes a induit des différences 
héréditaires d’effets compétiteurs sur les espèces subordonnées, tout en 
contrecarrant l’augmentation de la compétition avec la diminution du stress – le 
résultat dominant dans la littérature sur les systèmes subalpins. Nous avons aussi 
trouvé des  effets rétroactifs négatifs des espèces subordonnées pour l’espèce 
fondatrice, avec une diminution de la production de fleurs (par les coussins) due au 
nombre croissant d’espèces subordonnées. La diversité des espèces subordonnées 
était plus élevée dans les conditions environnementales favorables que dans les 
stressantes. Par conséquent, nous avons conclu que les effets génétiques 
surmontent les effets environnementaux, limitant la compétition dans les milieux 
favorables, maintenant ainsi une plus grande diversité dans ces milieux que dans les 
milieux stressants. 

Mots clés : jardin expérimental, compétition, facilitation, effets rétroactifs, 
Festuca gautieri, génétique, interactions entre plantes, Onobrychis cornuta, 
phénotype, plasticité, transplantation réciproque. 

 

Title : Roles of environmental plasticity and adaptation of nurse species from the 
subalpine and oromediterranean zones of the Pyrenees and the Mount-Lebanon for 
alpine communities structure 

Abstract : Alpine cushion plants are foundation species known for their nursing 
ability. Moreover, studies have shown that morphological variation in foundation 
species can trigger variation in competitive effects on subordinate species, likely to 
affect community composition. We investigated the consequences of intraspecific 



variation within two alpine cushion species (Festuca gautieri and Onobrychis cornuta) 
across heterogeneous environments in two mountain ranges [the Pyrenees (France) 
and Mount-Lebanon (Lebanon), respectively] for the associated plant communities 
(subalpine and oromediterranean, respectively). We assessed with observational 
and/or experimental (common-gardens, reciprocal transplantation experiments) 
approaches the relative contribution of genetics and plasticity to the morphological 
variation between two cushion phenotypes (tight and loose) of the foundation 
species, and to their differential effects on subordinate species. Community 
feedbacks were also quantified. Our results show that both genetics and plasticity 
contributed to the phenotypic variation. The genetic basis of the morphological 
differences between phenotypes induced heritable differences in competitive effects 
on subordinate species, but however counteracted the general increase in 
competition with decreasing stress dominantly found in the literature on subalpine 
systems. We also found negative feedbacks of subordinates on foundation species 
fitness, with higher cover of subordinate species reducing the cushions flower 
production. Subordinate species diversity was higher in benign than in stressed 
environmental conditions. Consequently, we concluded that genetic effects overcome 
the environmental effects by limiting competition in benign physical conditions, thus 
maintaining a higher diversity in benign than stressed conditions. 

Keywords : common-garden, competition, facilitation, feedback, Festuca 
gautieri, genetics, Onobrychis cornuta, phenotype, plant-plant interactions, plasticity, 
reciprocal transplantation. 
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Titre : Rôle de la plasticité environnementale et de l’adaptation d’espèces nurses des 

étages subalpins et oroméditerranéens des Pyrénées et du Mont-Liban pour la structure 

des communautés alpines 

 

Résumé 

Le sujet de cette thèse s’intègre dans une thématique émergente en interface entre 

l’écologie des communautés et la biologie évolutive: la génétique des communautés 

(étude des interactions génétiques entre les espèces et l’environnement abiotique dans les 

communautés). La plupart des études de génétique des communautés ont mis l'accent sur 

les interactions entre plusieurs niveaux trophiques, tandis que les interactions au même 

niveau trophique, et plus particulièrement les interactions entre plantes, restent faiblement 

étudiées sous une perspective évolutive. De plus, la plupart des études de génétique des 

communautés limitées aux plantes ont principalement porté sur les interactions négatives 

(i.e. compétition). Cependant, ces dernières années, l'intérêt pour des questions évolutives 

associées à des interactions positives (i.e. facilitation) entre les plantes a augmenté. La 

facilitation entre plantes joue un rôle considérable dans les environnements contraints tels 

que les milieux alpins, augmentant la diversité et structurant les communautés. Ces 

milieux sont souvent dominés par des plantes en forme de coussins. Les plantes en 

coussins sont connues pour leur capacité fondatrice de nouvel habitat pour les autres 

espèces. Elles dominent souvent les écosystèmes subalpin et alpin. Leur forme 

hémisphérique, leur petite taille et leur architecture plus ou moins compacte les rendent 

d’efficaces pièges de chaleur et d'eau. Ainsi, ces plantes jouent un rôle-clé dans les 

communautés, hébergeant plusieurs espèces au sein de leur canopée, maintenant ainsi la 

diversité dans des conditions environnementales difficiles. Des études ont montré que la 

variation morphologique au sein d’espèces fondatrices peut induire une variation des 

effets compétiteurs de ces espèces sur les espèces subordonnées, ce qui peut affecter la 

composition des communautés. 

 Cette thèse a pour but d’étudier les conséquences d’une variation intraspécifique 

de deux espèces fondatrices - Festuca gautieri et Onobrychis cornuta - occupant des 



micro-environnements contrastés dans deux systèmes montagneux - les Pyrénées 

(France) et le Mont-Liban (Liban), respectivement - sur les communautés végétales 

associées (subalpines et oroméditerranéennes, respectivement). Dans les deux systèmes, 

chacune des deux espèces fondatrices présente deux phénotypes: un phénotype « dense » 

avec une morphologie compacte dominant les habitats en topographie convexe, et un 

phénotype « lâche » avec une morphologie peu compacte dominant des habitats en 

topographie concave. Dans un contexte évolutif, il est important d'évaluer la 

différenciation génétique au sein des espèces fondatrices afin d’augmenter les chances 

d'avoir des conséquences au niveau de la communauté. Ainsi, le premier objectif de cette 

thèse est d'évaluer la base génétique des différences phénotypiques observées au sein de 

chacune des espèces fondatrices étudiées. De plus, dans les deux systèmes, des 

différences d'association avec des espèces subordonnées ont été observées entre les 

phénotypes (pour chaque espèce fondatrice), avec très peu d’espèces subordonnées 

associées au phénotype « dense » et plusieurs espèces subordonnées associées au 

phénotype « lâche ». Cela a conduit à l'hypothèse qu’il existe des différences dans les 

effets entre les deux phénotypes sur les espèces subordonnées, avec le phénotype 

« dense » étant compétiteur et le phénotype « lâche » étant facilitateur. Ainsi, le deuxième 

objectif est d'évaluer les différences entre les effets des phénotypes sur les espèces 

subordonnées, et d'évaluer la contribution de la génétique et de la variation de 

l'environnement (par exemple, le stress provoqué par la sécheresse et la perturbation 

provoquée par le pâturage) aux variations des effets phénotypiques. De plus, des patrons 

contrastés de production de fleurs ont été observé entre les phénotypes avec le phénotype 

« dense » (hébergeant très peu d'espèces subordonnées) ayant une forte production de 

fleurs, et le phénotype « lâche » (hébergeant plusieurs espèces subordonnées) ayant une 

faible production de fleurs. Ceci suggère que le fait d’héberger des espèces subordonnées 

peut avoir des conséquences pour les espèces fondatrices. Ainsi le troisième objectif de 

cette thèse est d'évaluer les effets de rétroaction des espèces subordonnées sur les espèces 

fondatrices. 

 Les principales questions résumant les objectifs de cette thèse sont les suivantes: 

 (1) Quelles sont les contributions relatives de la génétique et de la plasticité aux 

différences phénotypiques au sein des espèces fondatrices? 



(2) Existe-t-il des différences d’effets entre les phénotypes (de chaque espèce fondatrice 

étudiée) sur les espèces subordonnées ? Si oui, ces effets sont-ils héréditaires? 

(3) Ces effets sont-ils influencés par des changements dans les conditions 

environnementales (stress provoqué par la sécheresse et perturbation provoquée par le 

pâturage)? 

(4) Les effets rétroactifs des espèces subordonnées affectent-ils la fitness des espèces 

fondatrices ? 

 

 Nous avons évalué par des approches descriptives et/ou expérimentales (jardins 

expérimentaux, transplantations réciproques) les contributions de la génétique et de la 

plasticité à la variation morphologique entre les deux phénotypes de coussins (dense et 

lâche) pour chaque espèce fondatrice, et à leurs effets contrastés sur les espèces 

subordonnées. Nous avons également quantifié les effets rétroactifs de la communauté 

pour la reproduction des espèces fondatrices.  

 Nos résultats montrent une contribution à la fois de la génétique et de la plasticité 

à la variation phénotypique. La base génétique des variations morphologiques entre les 

phénotypes a induit des différences héréditaires d’effets compétiteurs sur les espèces 

subordonnées, tout en contrecarrant l’augmentation de la compétition avec la diminution 

du stress – le résultat dominant dans la littérature sur les systèmes subalpins. Nous avons 

aussi trouvé des effets rétroactifs négatifs des espèces subordonnées pour l’espèce 

fondatrice, avec une diminution de la production de fleurs (par les coussins) due au 

nombre croissant d’espèces subordonnées. La diversité des espèces subordonnées était 

plus élevée dans les conditions environnementales favorables que dans les conditions 

stressantes. Par conséquent, nous avons conclu que les effets génétiques surmontent les 

effets environnementaux, limitant la compétition dans les milieux favorables, maintenant 

ainsi une plus grande diversité dans ces milieux que dans les milieux stressants. 

 À la lumière des résultats de cette étude exploratoire, d'autres expérimentations 

pourraient révéler de nouvelles idées qui aident à comprendre la complexité des 

interactions entre plantes. Avec les progrès techniques de la biologie moléculaire, il serait 



important d'étudier le mécanisme moléculaire qui sous-tend la variation phénotypique au 

sein de chacune des espèces modèles, non seulement pour contre-vérifier leur 

déterminisme génétique, mais surtout pour étudier l'histoire de cette différenciation et la 

divergence génétique entre les deux phénotypes. 
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The dissertation is subdivided into six chapters. In the first chapter, I present an overview of 

the topics in the literature that were tackled in this Ph.D.: the extended effects of a genetic 

variation within a species on the community, biotic interactions (competition and facilitation), 

gradients of stress and disturbance, and local adaptation. In the second chapter, I present the 

study sites and the experimental designs set up in order to answer the main questions of my 

Ph.D. In the third chapter (first article, article published in Oecologia), I present experiments 

in which my colleagues and I investigate the genetic vs. phenotypic plasticity basis of 

differences in cushion morphological traits of a foundation species, Festuca gautieri, and the 

differences in competitive effects between two contrasting phenotypes of this foundation 

species on its subordinate species, and quantify community feedbacks on the foundation 

species fitness. In the fourth chapter (second article, submitted to Journal of Ecology) I 

present experiments in which my colleagues and I quantify the plasticity of the competitive / 

facilitative effects of the two phenotypes of Festuca gautieri, evaluate the genetic difference 

in competitive / facilitative effects between these phenotypes in the field (in natural 

conditions), and finally check if the genetic effects vary with the changes in micro-

environmental conditions (existence of a Genetic x Environment interaction). In the fifth 

chapter (third article, accepted in Journal of Vegetation Science), I present a study in which 

my colleagues and I evaluate the contribution of environmental effects by quantifying the 

plasticity of phenotypic community effects of a foundation legume shrub, Onobrychis 

cornuta, across exposure (North vs. South) and grazing conditions (Grazed vs. Ungrazed) in a 

subalpine xerophytic community of western Mount-Lebanon. In the sixth chapter, I conclude 

with a general synthesis on all the results of these experiments answering my questions and 

propose perspectives for future studies. I end the dissertation with a list of the extensive 

bibliography used in this Ph.D.  
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1- Bridging ‘community ecology’ to ‘evolutionary biology’: the emergence 

of ‘community genetics’ 
 

Community genetics2 is a growing field within biology seeking to link community ecology3 

to evolutionary biology4, which disciplines are usually studied relatively separately (Johnson 

& Stinchcombe 2007). The term ‘community genetics’ was first suggested by Jim Collins and 

was later introduced to scientific literature by Janis Antonovics (Antonovics 1992; Collins 

2003) who proposed that community genetics investigates “evolutionary genetic processes 

(e.g. natural selection, genetic drifts, mutation, gene flow…) that occur among interacting 

populations in communities”. In a simplified manner, community genetics studies the effects 

of intraspecific genetic variability on community structure. Researches have shown that 

genetic variation within a single species, especially a foundation5 (sensu Ellison et al. 2005) 

or a keystone6 (sensu Power et al. 1996) species, can have significant effects at the 

community level, thus, beyond the population level only traditionally assessed by geneticists. 

The impact of a genetic variation within a plant species has been shown to operate across 

trophic levels such as for arthropod communities (Fritz & Price 1988; Johnson & Agrawal 

2005; Whitham et al. 2006; Bailey et al. 2009; Johnson et al. 2009), microbes and fungi 

(Whitham et al. 2003; Bailey et al. 2009), plant pollinators (Genung et al. 2012), and 

herbivores (Genung et al. 2011), but also within trophic levels – among plants (Iason et al. 

2005; Pakeman et al. 2006; Genung et al. 2011, 2012; Gibson et al. 2012; Bailey et al. 2014). 

 Whitham et al. (2006) proposed that a full community genetics study should include 

three fundamental premises: extended phenotype7 (community and ecosystem phenotypes), 

community heritability, and community feedbacks. They argued that the ‘traditional’ 

phenotype of an individual (which represents the observable characteristics of its genotype’s 

expression in its environment) has predictable effects not only at the population level but 

extends to affect its community and ecosystem (see Figure 1). 

2 The study of genetic interactions that occur between species and their abiotic environment in complex communities 

(Whitham et al. 2006) 
3 A subfield of ecology that examines how interactions among species and their environment affect the abundance, 

distribution and diversity of species within communities” (Johnson & Stinchcombe 2007) and therefore community structure 
4 A subfield of biology that “considers genetic variation and the mechanisms that result in genetic and phenotypic changes 

within populations” (Johnson & Stinchcombe 2007), and thus study the evolutionary processes that produce diversity. 
5 A single species that defines much of the structure of a community by creating locally stable conditions for other species, 

and by modulating and stabilizing fundamental ecosystem processes (Ellison et al. 2005). 
6 A species whose effect is large, and disproportionately large relative to its abundance (Power et al. 1996). 
7 The effects of genes at levels higher than the population (Dawkins 1982; Whitham et al. 2003, 2006). 
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Figure 1. The extended phenotype traced from the genetic variability within a foundation species to 

the community and the ecosystem levels. The effects of a genetic variability within a foundation 

species cascade at levels higher than the population, and thus affect community structure and 

ecosystem processes (adapted from Whitham et al. 2006).  

 

 Whitham et al. (2003) present an example that shows the extended effects of a genetic 

variation within Pinus edulis, a dominant species8 of pinyon-juniper woodlands in the USA. 

P. edulis presents variation (which has both a genetic and an environmental component) in 

resistance to a moth – Dioryctria albovitella – that, at larval stage, feeds in the bark of 

terminal shoots causing dieback of the branches. The moth has minimal impact on its host  

(independently of the tree’s genotype) under normal environmental conditions, and thus both  

P. edulis types – moth-resistant and moth-susceptible – have a conical form. But, in drought 

and oligotrophic soil conditions, the impact of the insect on the moth-susceptible trees 

increases turning them into shrubs (Figure 2), decreasing the production of female cones, 

which in turn will affect seed dispersal by birds and rodents (in the absence of the moth, seed 

dispersal happens mainly by birds over long distances; in the presence of the moth, seed 

dispersal happens mainly by rodents over short distances). Therefore, the resistance to moth 

controls the outcome of competitive interactions among birds and rodents for seeds, which in 

turn feed back on the tree itself, determining the distance of its seed dispersal (local versus 

long-distance). This genetic variability of P. edulis in resistance to moths also affects 

8 Species that dominate community biomass and have total impacts that are large, but not disproportionate to their biomass 

(Power et al. 1996). 
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microbial and fungi communities (Figure 3), thus, showing that a variation within a single 

species can have consequences on the community structure of a multitude of species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Photo showing two morphotypes of Pinus edulis trees induced by a genetic variation in 

resistance to a stem-boring moth, Dioructria albovitella. In presence of the insect and in conditions of 

high soil nutrient and moisture stress (black cinder soil here), moth-susceptible trees turn into flat-

topped shrubs (dashed yellow line on the photo) and reduce female cone production while moth-

resistant trees stay unchanged (conical form with normal female cone production – straight yellow line 

on the photo; adapted from Brown et al. 2001, Photo courtesy of Thomas G. Whitham).  
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Figure 3. Effect of a genetic variation within Pinus edulis in resistance to Dioructria albovitella (a 

stem-boring moth) on the taxonomic and functional composition of communities associated to Pinus 

edulis. The graph shows the ratio of the abundance of decomposers, fungi and vertebrate seed 

harvesters on resistant trees relative to susceptible trees. Bars with values > 1 indicate greater 

abundance on resistant trees than on susceptible trees; bars with values < 1 indicate greater abundance 

on susceptible trees than on resistant trees. An asterisk above the bar denotes a statistically significant 

difference at P  < 0.05 (adapted from Whitham et al. 2003). 

 

 

 Many studies have shown feedback relationships between foundation plants and their 

associated communities (Holzapfel & Mahall 1999; Whitham et al. 2003, 2006; Lankau & 

Strauss 2007; Michalet et al. 2011; Cranston et al. 2012; Schöb et al. 2014). In the same 

review mentioned before (Whitham et al. 2006), the authors present a study on a foundation 

poplar species with two phenotypes varying in their foliar concentration in condensed tannin 

(low versus high), which has a genetic basis. Poplars with low condensed tannin were selected 

and fell by beavers (Figure 4a). With time, the abundance of standing poplars with high foliar 

condensed tannin increased while the abundance of those with low foliar condensed tannin 

decreased (Figure 4b). Since leaves fall mostly beneath their mother tree, and since high 

levels of condensed tannin were related to the decrease in nutrient release by decomposition 

and to the decrease in nitrogen mineralization (Figure 4c) by constraining microbial activity, 
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poplars with high foliar condensed tannins levels could affect nutrients and nitrogen 

availability. Thus, these trees will be pushed to invest more energy in fine-root production 

(Figure 4d) as a compensatory response to their need for nutrient acquisition, which could 

feed back to affect the performance of the poplars themselves. 

 

 

 
Figure 4. Selection pressures that are exerted on foundation species can affect interactions with other 

species, which in turn might feed back to affect the fitness9 of the individual that produced the 

phenotype. Here we show how the condensed tannin phenotype in the poplar could affect the foraging 

of an important herbivore, nutrient cycling and nutrient acquisition. Panels a,b show that the beaver 

Castor canadensis is an important agent of natural selection in which interactions with a foundation 

tree species could affect many other species that depend on the tree for their survival. Beavers 

selectively fell trees low in condensed tannins (r2 = 0.52, P < 0.001), which in turn affects the fitness 

of different tree genotypes and cross types. After 5 years of selective felling of trees, cross types that 

were high in condensed tannins (backcross hybrids and Populus angustifolia) had nearly tripled in 

abundance, whereas the cross type lowest in condensed tannins (Populus fremontii) had significantly 

declined in abundance, and the cross type intermediate in condensed tannins (F1 hybrids) showed an 

intermediate increase in abundance (whole-model ANOVA test, change in cross types; F = 15.66, P < 

0.0001). Panels c,d illustrate a potentially important feedback loop that presumably interacts through 

the microbial community to affect the tree’s performance. Panel c suggests that an increased 

concentration of condensed tannins in leaves of individual trees can inhibit the microbially mediated 

process of nitrogen mineralization (r2 = 0.65, P < 0.003). In turn, variation in soil nutrients could feed 

9 The contribution of the genes of an individual to the next generation, usually approximated through measuring survival and 

reproductive success (Savolainen et al. 2013). 
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back to affect the tree’s investment into fine-root production to forage for limiting nutrients (panel d; 

r2 = 0.60, P < 0.001), which can affect tree performance (adapted from Whitham et al. 2006). 

2- Community assembly: from genes to communities 

Community assembly rules (Diamond 1975) are a set of debatable rules in ecology (Rule 1: 

Forbidden species combinations, and Rule 2: Reduce niche overlap, Diamond 1975). These 

rules highlight the role of competition10 in determining the patterns of assemblage 

composition. Keddy (1992) proposed that the role of community assembly rules is not limited 

only to the assembly of species within a community, but integrates all factors responsible for 

the occurrence of a species within the community. He states that: “The process of constructing 

communities from species pools is in many ways analogous to the processes of evolution 

through natural selection. Habitats serve as filters for genotypes, with the least suited 

genotypes being filtered out, and the best suited surviving to reproduce. In the case of 

assembly rules, habitats are again serving as filters. However, in this case, the filters operate 

on traits11 and eliminate those sets of traits which are unsuitable to that environment. The 

species which comprise the community are those which survive the filter”.  

 Thus, species (or individuals) face different filters (stochastic, abiotic and biotic) 

before being able to participate to the final composition of a community (Figure 5). The 

stochastic filter acts on the initial species pool to form a regional then a local species pool; 

here, aleatory processes define species presence. The local species pool is than simultaneously 

subjected to the abiotic and biotic filters. The abiotic filter (i.e. environmental factors: 

temperature, soil water content, salinity…) acts on a regional and local scale. Species that 

tolerate the regional or local abiotic conditions can cross this filter, and ecologically similar 

species are filtered within the same fundamental niche (Lavorel & Garnier 2002). Thus, the 

abiotic filter acts in a way to reduce trait variability between species – trait convergence. The 

biotic filter (i.e. biotic interactions) acts on the individual scale in a way to eliminate similar 

species, and thus participate to the increase in trait variability between the species of a 

community – trait divergence (Weiher et al. 1998). This filter incorporates all kinds of 

10 A negative biotic interaction occurring between individuals of the same species (intra-specific) or between species of the 

same trophic levels (inter-specific), in which the performance (survival, growth or fecundity) of one is lowered by the 

presence of the other. 
11 A trait is a distinct variant of a phenotypic character of an organism that may be inherited, environmentally determined or a 

combination of the two. 
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interactions between two species (e.g. competition, facilitation, allelopathy12, herbivory, 

predation, pollination...). 

 
Figure 5. The main filters that structure a plant community. Each species is represented by a different 

geometrical form and color. Species cross simultaneously (from outside to inside) the stochastic filter, 

the abiotic filter and the biotic filter. The spatial scale, at which each of the filter operate, decreases 

from the initial species pool to the final community composition (adapted from Keddy 1992; Zobel 

1997; Díaz et al. 1999; Lortie et al. 2004) 

 

 

 However, Pärtel et al. (2011) argued that the term “species pool” should only be used 

to refer to species that can potentially occupy a particular habitat due to suitable local 

ecological conditions. They also emphasised that studies comparing species diversity of 

different ecosystems, regions or taxonomic groups should consider not only the observed 

local diversity, but also the “dark diversity” (i.e. species that are currently absent from a site 

but which belong to its species pool). Recently, de Bello et al. (2012) re-evaluated the role of 

biotic processes in generating trait divergence between the species of a community. They 

showed that biotic processes such as competition could lead to both trait divergence (through 

the exclusion of similar species – niche differentiation) and convergence (through exclusion 

12 A biological phenomenon - negative interaction - by which an organism produces biochemicals that influence the growth, 

survival, and reproduction of other organisms. 
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of dissimilar species – weaker competitor exclusion). Thus abiotic and biotic processes can 

produce similar patterns of traits diversity, and separating them cannot be done by comparing 

the trait diversity observed within communities to patterns of randomly generated 

communities based on sampling within a region. Instead, de Bello et al. (2012) proposed a 

framework, the “functional species pool”, in which they separated abiotic and biotic processes 

and distinguished opposing biotic effects (convergence and divergences) on community 

assembly (see Figure 6). A valuable point in their approach is the incorporation of the dark 

diversity within the species pool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Given a particular regional flora or fauna, that was formed according to different 

geographical and historical filters (1), habitat selection will filter out species whose environmental 

preference falls outside the range of environmental conditions available in a given site, thus creating a 

convergence in trait values (e.g., compare trait ranges – red dashed arrows – between 1 and 2). This 

convergence is removed when using the functional species pool approach. The test for assessing the 

relevance of biotic interactions on community assembly in each single site (3) is performed by 

comparing the functional diversity13 in the sampled community (FDcomm) with the functional 

diversity expected within the corresponding functional species pool (FDpool; species that potentially 

13 The extent of trait differences between species (de Bello et al. 2012). 
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coexist - filled grey circles). The deviance from a 1:1 relationship (i.e., random assembly14) between 

FDcomm and FDpool corresponds to prevailing biotic assembly processes (FDcomm > FDpool biotic 

divergence vs. FDcomm < FDpool indicating biotic convergence). Adapted from de Bello et al. 2012. 

 

 

2.1- Overview on biotic interactions and abiotic factors (stress and disturbance) 

 

For long time, ecologists have tried to come up with a generalised principle that holds across 

the natural world (Graham & Duda 2011). In their work on island biogeography, MacArthur 

& Wislon (1967) proposed one of the first models, the r/K selection model, seeking to explain 

and predict species distribution (initially designed to be applicable to all living beings). The 

r/K model was based on environmental stability to predict species selection. The r-selected 

species (or r-strategists) do best in unpredictable/disturbed environments; they are 

characterised by a rapid growth, early maturity, but poor competitive ability. The K-selected 

species (or K-strategists) do well in more predictable/stable environments; they are 

characterised by a slow growth rate (long life-span), late maturity, but high competitive 

ability. Although drawbacks of the r/K theory have been pointed out (Wilbur et al. 1974; 

Barbault 1987; Kuno 1991), it is still widely used as “enough people have found it a useful 

framework in which to interpret their observations [and thus,] it must contain an element of 

truth” (Stearns 1992). In particular, this model is well adapted for understanding tree species 

functional strategies and forest successions, in particular in benign physical conditions 

(Michalet et al. 2008). Also, Michalet et al. (2011) used this model to contrast the two 

different phenotypes of the alpine foundation species Geum rossii in northern Arizona (USA). 

Later on, more detailed models emerged and included gradients of stress15 and disturbance16.  

 Early in the seventies, Grime (1973) presented a model showing a unimodal 

relationship between species density17 and the intensity of stress (and site productivity) or 

disturbance (e.g. grazing, burning, flooding), commonly known as the “humped-back model” 

(Figure 7). Later on, this model was considered to be universal by plant ecologists (but see 

14 Approach by which the functional diversity observed within communities is compared to the functional diversity simulated 

in randomly generated communities based on sampling within a region (de Bello et al. 2012). 

 
15 External constraints limiting plant growth and community productivity (e.g. salinity, light, nutrient content; Grime 1973). 
16 Mechanisms limiting plant biomass by causing its destruction (Grime 1973). It can be abiotic (e.g. fire, flood, avalanche) 

or biotic (e.g. grazing), and is usually considered unpredictable. 
17 Number of species in a defined area. 
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Adler et al. 2011; Fridley et al. 2012). The principle of this model is that in stable conditions 

(in absence of disturbance) species diversity is low in most productive (resource-rich) 

environments where stress is low and competition is high due to the abundance of competitive 

(tall fast-growing) species. In contrast, on the other side of the hump, with the increase in 

stressful conditions species density decreases due to the decrease in productivity as 

environmental conditions become too harsh even for stress-tolerant species to persist (left 

curve in Figure 7). When considering disturbance only in productive communities (without 

stress), a similar pattern is observed. At low disturbance, species density is low due to 

competitive exclusion by the abundant competitive species. With the increase of disturbance, 

ruderal species (i.e. fast-growing short-lived species), which are well adapted to disturbance 

(Grime 1974), progressively replace competitive species that poorly tolerate disturbance. 

Species density reaches its highest value at intermediate levels of disturbance, where 

competitive and ruderal species co-occur. This is similar to the “Intermediate Disturbance 

Hypothesis” (Connell 1978). At high levels of disturbance, species density decreases as the 

abiotic constraint become extreme for any species to exist. 

 The universality of Grime’s “humped-back model” was held true, until Waide et al. 

(1999) doubted of its scale-dependency, which was later confirmed by Mittelbach et al. 

(2001) who, however, found it to be the dominant pattern for plants, especially at local to 

landscape scales. Subsequently, Gillman & Wright (2006) performed a survey on 159 

productivity-plant species richness relationships from 131 published studies and concluded 

that positive relationships were the exclusive form of relationships at continental to global 

extents, and that unimodal (humped-back) relationships were more likely to occur at small 

spatial (local) scales. Moreover, Pärtel et al. (2007) argue that the productivity-diversity 

humped-back relationship is not universal, as it is valid in temperate regions but not in 

tropical ones where positive relationships are more common. Later on, based on an 

intercontinental data set (from 48 herbaceous-dominated plant communities on five 

continents), Adler et al. (2011) challenged the concept of the humped-back model of plant 

diversity, doubting of its utility by showing no consistent general relationship between 

productivity and species richness at local, regional or global scales. However, Adler et al.’s 

work was criticised by Fridley et al. (2012) who showed that the data used was not exactly 

representative, mostly because it lacked sufficient high-productivity sites and excluded 

anthropogenic sites for no scientific reasons; by including high-productivity sites (e.g. salt 

marshes, herbaceous floodplains…), Adler et al.’s data would have revealed a pattern 

consistent with the humped-back model (Fridley et al. 2012), i.e. a decrease in richness at 
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high productivity levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Diagrams representing Grime’s humped-shape relationship between species density and 

stress/biomass (left panel), and between species density and disturbance/biomass (right panel). The 

vertical axe also represents an index of competitive exclusion. Species diversity is highest at 

intermediate stress and disturbance levels where competitive exclusion is at its peak. The letters 

represent: C: competitive species (or ecotypes), S: stress-tolerant species – species of high resistance 

to stress, R: ruderal species – species with a rapid seedling establishment and growth (adapted from 

Grime 1973). 

2.2- Facilitation: a long-time forgotten interaction due to the predominance of 

competition 

 

Until the mid-nineties, ecological theories and models have considered only negative 

interactions (e.g. Grime 1973; Connell 1978; Huston 1979; Tilman 1980, 1982), even though 

positive interactions (i.e. facilitation) have been reported in experimental studies [Niering et 

al. 1963 and Turner et al. 1966 in Callaway 2007; Hunter & Aarssen 1988] and ecological 

theories (Clements 1916). This is because negative interactions (e.g. competition or 

interference) were thought to be the main biotic filter structuring plant communities 

(Goldberg & Barton 1992). However, two schools of thoughts regarding the strength of 

Species density 

 24 



 
 
competition along productivity gradients [in plant community ecology] emerged over the 

time. This divergence in thoughts was known as the “Grime-Tilman debate”. Grime 

considered that [aboveground] competition decreases from high to low levels of productivity, 

and interactions vanish under stressful conditions (Grime 1973, 1977). In contrast, Tilman 

founded his “resource-ratio” theory by arguing that when productivity decreases, competition 

for limiting resources switches from aboveground to belowground, and thus competition is 

held constant (Tilman 1980, 1982). Both theories have gained significant attention in the field 

of plant ecology. Grace (1991) argues that the “Grime-Tilman debate” is due to differences in 

the definitions of some terms used by each of these authors (e.g. ‘competition’, for Grime, it 

is the capacity for resource capture and the mechanism by which a plant suppresses the fitness 

of a neighbour; for Tilman, competitive success is the ability to draw resources to a low level 

and to tolerate those low levels – to have a low equilibrium resource requirement). Welden & 

Slauson (1986) tried resolving this ‘debate’ by clarifying the difference between the intensity 

and the importance of competition (see Box 1 for the definition of ‘competition intensity’ and 

‘competition importance’). Competition importance has been proposed to explain Grime’s 

(1973) theory on competition, whereas intensity explains Tilman’s theory – competition 

intensity stays constant along the productivity gradient, but switches from aboveground to 

belowground in unproductive environments – (Welden & Slauson 1986; Grace 1991).  

 Until recently, negative interaction have been the primary concern of studies in plant 

community genetics (e.g. Whitlock et al. 2007; Lankau & Strauss 2007; Johnson et al. 2008; 

Bossdorf et al. 2009; Silvertown et al. 2009; Genung et al. 2011). However, [as already said] 

facilitation has been found in theoretical and experimental studies (Clements 1916; Hunter & 

Aarssen 1988). For instance, Clements (1916) argues that plants themselves cause succession 

to occur by improving site factors (e.g. light capture by leaves, production of detritus, water 

and nutrient uptake, nitrogen fixation), which allows the establishment of plants of the next 

succession stage. This means that plants of one stage directly ‘facilitate’ plants of the next 

succession stage. Though, the little attention given to facilitation and the predominance of 

competition for a long time in research fields such as ecology is likely because facilitation 

could go undetected, as it appears weaker than competitive mechanisms (Gross 2008).  
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 Nevertheless, interest in facilitation in ecological studies has significantly increased 

over the past two decades, leading Bertness & Callaway (1994) to come up with the Stress 

Gradient Hypothesis (SGH; Figure 8). The SGH predicts that the outcome of plant-plant 

interactions extends from competition at intermediate levels of stress and disturbance (under 

favourable conditions) to facilitation at both extremes of these two gradients (Bertness & 

Callaway 1994; Brooker & Callaghan 1998). At high levels of stress, facilitation is due to 

habitat amelioration by stress-tolerant species leading to the extension of the realised niche of 

[stress-intolerant] competitive species (Bruno et al. 2003). At high levels of disturbance, 

facilitation is indirect by the means of associational defences (e.g. associational defences 

against herbivores, Rousset & Lepart 2000; Milchunas & Noy-Meir 2002; Rebollo et al. 

2002; Baraza et al. 2006; Smit et al. 2007). Because of the differences in the methods 

followed (observational versus experimental; Maestre et al. 2005) and the complexity added 

Box 1. ‘Competition intensity’ versus ‘Competition importance’ 

 

Welden & Slauson (1986) state that: 

“The intensity of competition is a physiological concept, related to the well-being of 

individual organisms but only indirectly and conditionally to their fitness, and even more 

indirectly to the evolution of populations and the structure of communities. The importance 

of competition is primarily an ecological and evolutionary concept, related directly to the 

ecology and fitness of individuals but only indirectly to their physiological states. The 

intensity of competition is not necessarily correlated with the intensities of predation, 

disturbance, abiotic stress, or other ecological processes. The importance of competition is 

necessarily relative to the importances of other processes. Intensity refers primarily to the 

processes of present competition, whereas importance refers primarily to the products of 

past competition”. 

 

In other words: 

Intensity refers to the absolute impact of neighbouring plants on a target plant (negative for 

competition and positive for facilitation). 

Importance is the contribution of biotic interactions relative to other environmental 

processes such as stress and disturbance (sensu Grime 1973) to the change in the 

performance of a target plant. 
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by factors like the variation in the nature (resource versus non-resource) and the length of the 

gradients considered (Maestre et al. 2005; Lortie & Callaway 2006; Brooker et al. 2008), the 

chosen estimator of performance (Maestre et al. 2005; Brooker et al. 2008; Gómez-Aparicio 

et al. 2008) and the diverse characteristics (chemical and physical, Baraza et al. 2006) and 

strategies (competitive versus stress-tolerant) of both the nurse18 and the beneficiary19 species 

involved (Liancourt et al. 2005; Michalet 2007; Maestre et al. 2009), the outcomes of plant-

plant interaction studies in the literature were ambiguous and conflicting. Many experimental 

studies have supported the predictions of the SGH (Callaway et al. 2002; Liancourt et al. 

2005; Schiffers & Tielbörger 2006) while others contradicted it and found competition to be 

important under high stress levels (Maestre & Cortina 2004). 

 

 

Figure 8. The Stress Gradient Hypothesis (SGH): the shift in biotic interactions along stress and 

disturbance gradients. Facilitation increases by neighbourhood habitat amelioration with the increase 

in stressful conditions (in red), and by associational defences with the increase in physical disturbance 

(in blue; adapted from Bertness & Callaway 1994). 

 

 Hacker & Gaines (1997) suggested that at intermediate levels of stress and 

18 In the context of facilitation, a ‘nurse’ or facilitator species is the species that ameliorates the environmental conditions. 
19 In the context of facilitation, a beneficiary is the ‘nursed’ or facilitated species that benefit from the amelioration of the 

environmental conditions by the nurse species. 
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disturbance, facilitator species that might normally be competitively excluded are released 

from competition and therefore enhance species diversity from intermediate to very high 

levels of stress and disturbance. Later on, Michalet et al. (2006) presented a revision of 

Grime’s humped-back model by integrating facilitation to it  (Figure 9; for models integrating 

facilitation to ecological theory, also see Bruno et al. 2003 and Lortie et al. 2004). According 

to them, the model remains unchanged in productive environments where diversity is low due 

to competitive exclusion (part A1 in Figure 9). In conditions of low environmental severity 

(part A2 in Figure 9), competition is gradually replaced by facilitation, thus increasing 

diversity by expanding the realized niche of stress-intolerant competitive (stress-intolerant) 

species. Diversity reaches its maximum at intermediate levels of environmental severity 

where species of the three strategy types (competitive, ruderal and stress-tolerant species) co-

occur. From intermediate to high environmental severity levels (part B1 in Figure 9), 

facilitation decreases for competitive and then for stress-tolerant species, thus decreasing 

diversity. At very high environmental severity levels, facilitation ‘collapses’ as environmental 

conditions become too harsh for the ‘nursing’ plants to facilitate other plants (due to a 

decrease in the size of the nurse plants; see also Forey et al. 2010; Le Bagousse-Pinguet et al. 

2013; Michalet et al. 2014a). Additionally, some authors proposed that at the most severe 

conditions, all interactions (positive and negative) collapse as both competitive and 

facilitative species are weakened (Malkinson & Tilbörger 2010), consistent with the results of 

Maalouf et al. (2012). 

 The inclusion of positive interactions into ecological theories proved that facilitative 

interactions also have strong effects on community and ecosystem properties, including 

structure, productivity and stability (Mulder et al. 2001; Michalet et al. 2006; Callaway 2007; 

Brooker et al. 2008; Butterfield et al. 2013; Le Bagousse-Pinguet et al. 2014a), specifically in 

severe environments. Thus, it is not surprising to see the growing number of studies of 

facilitative interactions among plants in an evolutionary perspective (Valiente-Banuet et al. 

2006; Crutsinger et al. 2010, 2013 ; Liancourt & Tielbörger 2011; Michalet et al. 2011; 

Thorpe et al. 2011; Butterfield et al. 2013; Bailey et al. 2014; Le Bagousse-Pinguet et al. 

2014a). 
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Figure 9. Michalet et al.’s (2006) inclusion of facilitation into Grime’s humped-back model of the 

relationship between species richness and both biomass and environmental severity (adapted from 

Grime 1973). Lower panel: variation of species richness along two opposite gradients of 

environmental severity (stress and disturbance) and biomass. Upper panel: the average type of net 

interactions (the sum of positive and negative interactions between neighbours) received by 

competitive stress-intolerant competitive species (grey curve) and stress-tolerant species (black curve). 

In the parts A1 and B2 of the graph only one curve is drawn, because only one of these two types of 

strategies occurs in the communities (as is consistent with the lower panel). 

 

2.3- Measuring biotic interactions 

 

Positive and negative interactions act simultaneously in nature (Holmgren et al. 1997; 

Maestre et al. 2003). Usually, the net result of an interaction is measured by comparing the 

performances (generally survival and growth) of target individuals in presence and absence of 

a neighbour. Competition occurs when the target performance is better in absence rather than 

in presence of a neighbour; facilitation occurs in the opposite case. Thus, measuring plant-

plant interactions requires experimental approaches. ‘Neighbour removal’ is the commonly 

used method. Other methods, such as comparing the response of a target species in natural 

open areas near the neighbour, have also been used particularly in dry ecosystems or alpine 

communities. Michalet (2006) stressed the importance of choosing the method to quantify 

biotic interactions, as it can affect the outcome of the experiment, specifically in arid 
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environments. Usually, target plants used in such experiments are phytometers randomly 

collected at the site. Weigelt & Jolliffe (2003) present 50 indices that help calculating the net 

effect of an interaction. It is now widely accepted that the Relative Interaction Index (RII, 

Armas et al. 2004) offers the most consistent results for calculating interaction intensity (see 

chapters 3, 4 or 5 for details on RII calculation); it can be used to measure multispecific 

interactions at the community level (Armas et al. 2004). 

   

3- Evolution, natural selection and adaptation  
 

In The Origin of Species (1859), Charles Darwin presents evidence of evolution. He argues 

that all living beings are descendants of an earlier species (shared a common ancestral parent 

at some point in their history), and explains the existence of evolution by proposing the 

mechanism of natural selection, which is an important process - but not the only one - by 

which evolution takes place within a population of organisms. The forces of natural selection 

act on the apparent characters (phenotype) of an organism; however, only when natural 

selection acts on heritable characters – selecting the genotype expressing ‘the most 

appropriate’ phenotype to ‘fit’ its environment – evolution can occur (Whitham et al. 2003), 

eventually leading to new species or ecotypes (Grassein et al. 2010). As said above, natural 

selection is not the only mechanism of evolution but one of the processes that leads to it. 

Since the time when Charles Darwin and Alfred Russel Wallace first came up with The 

Theory of Evolution, the growing knowledge has led to the ‘evolution’ of this theory giving 

birth to the Modern Synthesis (or Modern Evolutionary Synthesis) theory [Julien Huxley in 

Evolution: The Modern Synthesis (1942)]. This theory recognizes several possible 

mechanisms of evolution other than natural selection, such as genetic drift (or allelic drift), 

mutations, and migration, which also play a role in the evolution of new species. Also, 

phenotypic plasticity is believed to be an evolutionary adaptation to environmental variation 

(Sultan 1995), allowing individuals to change their phenotypes in order to ‘fit’ a new 

environment. 

 Evolution implicates two related phenomena: adaptation20 and speciation21. Over the 

course of time, species struggle to cope with their changing environment, which requires them 

to modify their phenotypes in ways that permit them to succeed and persist in their 

20 A modification in structure or behaviour, often hereditary, by which a species or individual improves its condition in 

relationship to its environment. 
21 An evolutionary process by which new species arise. 
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environment. These changes in one species can result in the emergence of two or more new 

species, leading to the multiplication of the number of species. 

3.1- Local adaptation: the contribution of genetics and plasticity 

 

Local adaptation is defined as “a process whereby natural selection increases the frequency of 

traits within a population that enhance the survival or reproductive success of individuals 

expressing them” (Taylor 1991). In other words, it is an adaptive variation in response to local 

changes in environmental conditions. Generally, local adaptation is more important for 

immobile organisms (e.g. plants) than mobile organisms (e.g. animals). This is because, when 

local conditions become stressful, mobile organisms are often capable to migrate to a more 

suitable environment, whereas immobile organisms have to increase physiological tolerance 

or phenotypic plasticity in order to cope with the changes and survive (Bradshaw 1972). 

Plants can be locally adapted either through genetic variation (e.g. genetic mutation, gene 

flow, genetic recombination, genetic drift, migration; Kawecki & Ebert 2004) or by 

phenotypic plasticity22 (Sultan 1995), which is important for short-term responses to 

environmental change as far as it helps species to persist for a longer period during which 

evolutionary adaptation may occur (Pratt & Mooney 2013). When no other forces and 

constraints occur, local adaptation is expressed in improved fitness of each genotype (or 

deme) in its local habitat than genotypes from other habitats (Kawecki & Ebert 2004). 

Nevertheless, species performance and distribution is in part determined by their interactions 

with other species within their community (Brooker & Callaghan 1998). 

 

3.2- Detecting local adaptation: reciprocal transplant and common-garden experiments 

 

A way to straightforwardly study local adaptation is throughout reciprocal transplant 

experiments (Joshi et al. 2001; Kawecki & Ebert 2004; Ågren & Schemske 2012; Bennington 

et al. 2012). This approach involves assessing the performance of individuals of at least two 

different genotypes (or phenotypes) by reciprocally raising them in home and away sites. As 

argued by Kawecki & Ebert (2004), from the viewpoint of local adaptation, a home-site 

advantage must be evaluated between ‘local’ versus ‘immigrant’ genotypes (or phenotypes) 

and not between a given genotype at ‘home’ and ‘away’ (which is a reaction norm23 used for 

assessing plasticity, Pigliucci et al. 2006; Vitasse et al. 2010). When applicable in the field, 

this approach is highly relevant as it allows assessing the performance of the differing 

22 The capacity of a genotype to change its expression in response to environmental variation. 
23 The set of values of a character expressed by an organism in response to different environments (sensu Nijhout 2003). 
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genotypes (or phenotypes) under natural environmental conditions that are difficult or even 

impossible to artificially reproduce in laboratory. However, an approach of reciprocal 

transplant with adult individuals is sometimes technically, ethically or legally impossible 

(Kawecki & Ebert 2004; García-Fernández et al. 2013). In these situations, greenhouse and 

common-garden24 experiments offer an opportunity to assess the performance of different 

genotypes (or phenotypes) under controlled environmental conditions, thus excluding 

confounding effects that cannot be taken into account in the field. Additionally, such 

experimental approaches are useful as they allow separating the effects of plasticity from 

those of genetic differences (Clausen et al. 1940; Roach & Wulff 1987; Schmid & Dolt 

1994). 

 

4- Thesis objectives 

 
The main scope of this Ph.D. is to examine the community-level consequences of a 

phenotypic differentiation within two foundation species – Festuca gautieri (from the Poaceae 

family) in the French Pyrenees and Onobrychis cornuta (from the Fabaceae family) in Mount-

Lebanon (Lebanon) – of the subalpine and oromediterranean communities, respectively. 

 In both systems, each species presents two phenotypes: a ‘tight’ phenotype with a 

compact morphology dominating convex topographic habitats, and a ‘loose’ phenotype with 

open stem morphology dominating concave topographic habitats. In an evolutionary context, 

it is important to assess the genetic differentiation within foundations species, due to the 

increased chances of having consequences at the community level (Whitham et al. 2006; 

Gibson et al. 2012). Thus, my first objective was to assess the genetic basis of the observed 

phenotypic differences within each of the studied foundation species. 

 In both systems, contrasting associational patterns with subordinate25 species were 

observed between the phenotypes (for each foundation species), with the tight phenotype 

associated with few subordinate species and the loose phenotype associated with a high cover 

of subordinate species. This lead to the hypothesis that there are differences in effects between 

the two phenotypes on their subordinate species, with the tight phenotype being a competitor 

24 An experimental approach involving planting individuals at the same field site so that all individuals experience the same 

environmental conditions. Observed differences in the phenotypes among plants  are assum ed to be    

than environmentally based (Whitham et al. 2006). 

25 In a community including a dominant species (i.e. species found frequently with high relative cover), subordinate species 

(or simply, subordinates) are species found frequently, but with low relative cover (sensu Grime 1998). 
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and the loose one being a facilitator. Thus, my second objective was to assess the differences 

across phenotypes in effects on subordinate species, and to evaluate the contribution of 

genetics and the environmental variation (e.g. drought stress and grazing disturbance) to 

changes in phenotype effects. 

 Additionally, contrasting flower production was observed between tight and loose 

phenotypes with tight phenotypes (associated with very few subordinate species) having a 

high flower production and loose phenotypes (associated with a high cover of subordinate 

species) having a low flower production. This suggests that harbouring subordinate species 

may have consequences for the foundation species. Thus my third objective was to assess the 

feedback effects of subordinate species on the foundation species. 

 

The following are the main questions resuming my thesis objectives: 

1- What are the relative contributions of genetics and plasticity to the phenotypic differences 

within foundation species? [Chapter 3] 

2- Do the differing phenotypes have contrasting effects on subordinates? If so, are these 

effects heritable? [Chapters 3 and 4] 

3- Are these effects influenced by changes in environmental conditions (drought stress and 

grazing disturbance)? [Chapters 3, 4, 5] 

4- Do community feedbacks affect foundation species fitness? [Chapter 3]  
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My Ph.D. study is implemented in two mountainous ranges, the Pyrenees (Pyrénées-

Atlantiques, France) and the Mount-Lebanon (Lebanon). In the following parts of this 

chapter, I present the two study sites and model species in each mountainous range, and a 

description of my experimental designs. 

 

1- The study site in the Pyrenees, the model species (Festuca gautieri subsp. 

scoparia Hackel & Kerner), and the experimental designs 
 

1.1- Study site and model species 

 

The Pyrénées-Atlantiques is a department in Aquitaine region, southwest of France. It takes 

its name from the Atlantic Ocean and the Pyrenees chain, which crosses it from the Col 

d’Aubisque in the East to the mouth of the Bidassoa River in the West. In this department, the 

Pyrenees culminates at 2884 m (Pic du Midi d’Ossau). Cattle, sheep, pigs and horses farming 

are a major human activity in the Pyrenees; the beginning of summer season is marked by the 

‘summer transhumance’, the migration of the herds from the valley to the mountain. 

 I carried out my research on the northern side of the Pyrenees, 100 km from the 

Atlantic Ocean, at La Pierre Saint-Martin pass (42°58’N, 0°45’W, altitude: 1744 m a.s.l.; 

Figure 10). Climate is temperate oceanic with the highest rainfall occurring in winter (mean 

annual precipitation is 2850 mm). Mean temperature ranges between -2°C in winter and 12°C 

in summer (Soum-Couy, 42°58’N, 0°43’W, altitude: 2150 m, Météo France). The bedrock is 

calcareous, mainly limestone with contrasting soil depths depending on topography (Le 

Bagousse-Pinguet et al. 2014b). The vegetation form is calcareous grassland, characterised by 

short herbaceous plant communities dominated by a cushion-forming foundation species, 

Festuca gautieri. Similar to other cold-temperate calcareous grasslands in Europe, the 

subalpine grasslands on calcareous substrates in the Pyrenees are ecosystems with a rich 

diversity of plant species (Sebastiá 2004). 

 

1.2- Model species 

 

My model species, Festuca gautieri subsp. scoparia Hackel & Kerner, the ‘Bearskin fescue’, 

is a dwarf grass with a circular to elliptic cushion-like form. It has bright green leaves with 

yellowish-green inflorescences flowering from July to August. At my site, this species 

dominates the steep scree slopes (Figures 9 and 10), most probably because of its low grazing 
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tolerance. It is endemic to the Pyrenees and plays a fundamental ecological role, as it is a 

foundation species (i.e. species that structures a community by creating locally stable 

conditions, Ellison et al. 2005) typical of subalpine26 [and alpine] grasslands27 on rocky 

calcareous soils (Saule 1991). The habitat dominated by F. gautieri came under the terms 

“Pelouse pyrénéennes à Festuca gautieri (36.434)” in the CORINE biotopes code and 

“Pelouses calcaires alpines et subalpines (6170)” in the EU code (Annex 1 of the Directive 

Habitat). Cushion-like plants are best adapted to alpine habitats (Körner 1995) and mostly 

common in cool and nutrient poor environments, especially on bare soils and in open 

vegetation in exposed habitats (Körner 2003). These forms of plants are known for their 

ability to create a favourable microenvironment for other species (plants and/or animals) as 

they attenuate the extreme environmental temperatures and increase soil moisture within their 

canopy (Arroyo et al. 2003; Körner 2003; Cavieres et al. 2006). However, this depends on the 

morphology of the cushion, as cushions of the same species may present morphological 

differences (Michalet et al. 2011). In my study system, two distinct cushion phenotypes, tight 

and loose, occur under contrasting topographic and soil conditions (Le Bagousse-Pinguet et 

al. 2014b) with contrasting associations with other species of the community. The tight 

phenotype, characterised by compact stem morphology, dominates convex topographies with 

shallow stony (stone cover = 73.6 ± 3.7%, n = 30) and relatively dry soils (soil volumetric 

water content measured with a theta-probe - ML3X - Delta-T Devices, Cambridge, UK - 3 

days after a rain event: 13.10 ± 1.28, n = 15) and shelters few if any other species. The loose 

phenotype, characterised by loose stem morphology with open area within its canopy 

sheltering many subordinate species dominates concave topographies with relatively deeper 

and less stony (stone cover = 53.0 ± 3.4%, n = 30, result of the t-test: P < 0.001) and 

relatively wet soils (soil volumetric water content: 27.73 ± 1.74, n = 15, result of the t-test: P 

< 0.001). Cushions with intermediate traits are also observed in intermediate ecological 

conditions, but were much less frequent that the two extreme phenotypes (cushion frequency 

measured in ten 10-m-long transects, 10.4% for intermediate cushions vs. 66.7% for tight 

phenotypes and 22.9% for loose phenotypes; cushion classification in the field was based on a 

leaf pungency index varying from 0: not pungent, to 5: very pungent; details on methods are 

provided in the methods part of chapter 3, article published in Oecologia). The scale of habitat 

heterogeneity is less than one meter, which allows both phenotypes to exist side-by-side 

(Figure 12). Frequent subordinate species of the community are Agrostis capillaris L., Galium 

26 The subalpine zone is the zone of plants just below the tree line. In the Pyrenees, the subalpine vegetation zone ranges from 

1700-1900 to 2300-2500 m in altitude. When ascending, it follows the Mountainous zone and precedes the Alpine zone. 
27 Grasslands are areas where the dominant vegetation is grass (Poaceae). 
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pumilum Murray, Campanula rotundifolia L., Alchemilla conjuncta Bab., Lotus corniculatus 

L., Festuca rubra L. and Trifolium pratense L. 

 

 

 
Figure 10. Location of the study site (yellow rectangle on the left; also see Figure 11) and of the 

reciprocal transplant experimental gardens (yellow rectangle on the right) at La Pierre Saint-Martin in 

the Pyrenees (42°58’N, 0°45’W). The picture was captured using Google Earth 7.1.2.2041. 

 

 

1.3- Experimental designs 

 

1.3.1- What are the relative contributions of genetics and plasticity to the phenotypic 

differences within F. gautieri? [Chapters 3 and 4] 

 

I used a trait-based approach, a powerful tool allowing visualizing and comparing patterns 

(Keddy 1992; Garnier & Navas 2012), in a way to understand the morphological differences 

between F. gautieri phenotypes and the differing effects of these phenotypes on other species 

of the community. In order to answer my first main question of this thesis, I first adopted an 

observational approach in order to assess field differences in cushion traits between the 

phenotypes. In July 2012, I measured maximum leaf length, cushion penetration (an index of 

cushion compactness and interference), leaf thickness and number of inflorescences on 60 

cushions (30 tight and 30 loose) in their natural habitats (42°58’N, 0°45’W, altitude: 1744 m 

a.s.l., La Pierre Saint-Martin, see Figure 9). In parallel, a shadehouse study was set up in order 
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to experimentally assess the contribution of genetics and plasticity in changing traits among 

phenotypes and habitats. The shadehouse was located at the INRA station of Cestas-Pierroton, 

France (44°44’N, 0°46’W; 60 m a.s.l.). Three hundred replicates of each phenotype were 

grown from April 2011 till September 2013 in contrasting environmental conditions 

mimicking the two natural habitats (convex topography with shallow, stony and relatively dry 

soil for the tight cushion vs. concave topography with deep, less stony and wet soil for the 

loose cushion). The 300 replicates were obtained from 15 mature and discrete cushions 

(hereafter genotypes) that were collected on site in November 2010, each separated into 20 

standardised tillers (leaves: 5-10, roots: 5 cm). Each tiller was transplanted in a separate pot, 

and all pots were randomly placed on benches. In 2011 and 2012, from April to September, a 

watering treatment was applied with 10 replicates of each treatment combination (phenotype 

x watering treatment) by irrigating half of the pots with one litre of tap water (Watered pots) 

three times a week and the other half once a week only (Dry pots). This was done to assess 

the potential plastic responses of phenotypes to the occurrence of a weak drought stress. At 

the beginning and the end of each growing season (April and October respectively), I 

recorded survival, maximum leaf length, cushion penetration, leaf thickness, cushion surface 

and leaf density (more details on methods are provided in chapter 3, article published in 

Oecologia). Additionally, in order to reinforce my results and to evaluate the adaptation of 

each phenotype to its habitat, I set up a reciprocal transplant experiment at La Pierre Saint-

Martin (42°58’N, 0°45’W, altitude: 1615 m a.s.l., see Figure 9). In July 2013, I established 

two experimental gardens in contrasting topographic positions. The first garden (convex 

garden hereafter) was set up in a convex topographic position on shallow, stony and relatively 

dry soil simulating the tight cushion’s natural microhabitat. The second garden (concave 

garden hereafter) was set up in a concave topographic position on deep, less stony and 

relatively wet soil simulating the loose cushion’s natural microhabitat (Figure 13). The two 

gardens were 50 m apart. In each garden, I randomly transplanted 40 mature cushion 

replicates of each F. gautieri phenotype (50 cm distant from each other), representing 8 

different genotypes with 5 replicates each (all transplanted cushions were grown from tillers 

for 2 years within the shadehouse at Cestas-Pierroton). Before planting out, resident 

vegetation was manually eliminated to limit competition. The gardens were fenced with 

metallic nets to prevent herbivory (more details on methods can be found in chapter 4). 
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Figure 11. Festuca gautieri cushions dominating steep (40°) North-facing scree slopes at the study 

site (altitude: 1744 m, La Pierre Saint-Martin, Atlantic Pyrenees, France). Photo taken in July 2012 by 

Patrick AL Hayek. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  The two phenotypes of Festuca gautieri in their natural habitats at La Pierre Saint-Martin 

(Atlantic Pyrenees, France): tight cushion in rocky convex topography and loose cushion in concave 

topography. Photo taken in July 2014 by Patrick Al Hayek.  
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Figure 13. Two photos showing the two gardens (convex and concave) of the reciprocal transplant 

experiment at La Pierre Saint-Martin (Atlantic-Pyrenees, France). Photo (a) was taken in July 2012 by 

Clément Lalait, photo (b) was taken in July 2014 by Patrick Al Hayek. 
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1.3.2- Do the differing phenotypes have contrasting effects on the subordinate species? 

Are these effects heritable? [Chapters 3 and 4] 

 
I set up three experiments to evaluate the competitive and/or facilitative ability (effect and 

response) of both F. gautieri phenotypes: in their natural environment (in the field), in the 

shadehouse and in the reciprocal transplant gardens. I used adult tight and loose cushions of 

F. gautieri to assess their competitive/facilitative effects, and three target individuals, Agrostis 

capillaris and the two phenotypes of F. gautieri to also assess their competitive/facilitative 

response. 

  In the field, a cushion removal experiment was set up (Al Hayek et al. 2014). In June 

2011, 5 sites distant of at least 100 m were selected in a northern slope. In each site, we 

selected 6 discrete cushions of each F. gautieri phenotype that include one discrete individual 

of A. capillaris. For half of the cushions (3 tight and 3 loose in each site), we removed the 

aboveground parts of F. gautieri cushions within a circular area of 15 cm in diameter centred 

on the A. capillaris individual. Then, we transplanted one individual (tiller) of each F. 

gautieri phenotype at 5 cm from A. capillaris (this was done within removed and control 

cushions; Figure 14). In July 2012, we recorded survival, height, leaf number and biomass of 

all target individuals. 

 

 

 
Figure 14. A schematic representation of the cushion removal experiment I conducted on site from 

June 2011 to July 2012. In this figure I represent one of the five sites of this experiment. 
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  In the shadehouse, I recorded survival and biomass for the same three target species 

(A. capillaris, tight F. gautieri, and loose F. gautieri; Target treatment) grown in pots 

including a tight or loose cushion or no cushion (Neighbour treatment), with 36 replicates (6 

replicates of 6 cushion genotypes) per treatment combination. All pots (with and without 

cushion) were randomly placed on benches (for field and shadehouse experiments, more 

details concerning methods can be found in the third section of the methods in chapter 3, 

article published in Oecologia). 

 In the reciprocal transplant gardens, in July 2013 I set up a competition experiment by 

transplanting the same three target individuals (A. capillaris, tight F. gautieri, and loose F. 

gautieri; Target treatment) within the 40 cushions of each F. gautieri phenotype and in 40 

open areas (Neighbour treatment) between the cushions in each garden (Garden treatment). In 

September 2013 (after summer season), I recorded targets survival, growth (height and total 

leaf number), and in June 2014 I recorded survival but not growth as very few targets 

succeeded to survive and thus I did not have a sufficient number of replicates to perform 

statistical analyses.  

 In July 2014, I carried out a floristic survey within the cushions and the defined open 

areas and recorded species richness and abundance (for the reciprocal transplant competition 

experiment, more details concerning methods can be found in the third section of the methods 

in chapter 4). 

 

 

1.3.3- Do community feedbacks affect F. gautieri cushion fitness? [Chapter 3] 

 

This issue was addressed with both observational and experimental approaches. In July 2012, 

my colleagues and I counted the number of inflorescences of 60 cushions (30 tight and 30 

loose). In June 2011, we randomly selected 40 loose cushions on site and removed all 

subordinate species growing within a circular area of 20 cm in diameter in half of the selected 

loose cushions. In late July 2012, I counted the number of inflorescences produced by all 

cushions within the delimited circular plot.  
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2- The study site in the Mount-Lebanon, the model species (Onobrychis 

cornuta (L.) Desv.) and the experimental design 
 

2.1- Study site 

 

The Mount-Lebanon is the highest Lebanese mountainous range extending along 170 km 

parallel to the Mediterranean coast (oriented NNE-SSW) and 25 to 30 km wide. It culminates 

at 3083 m a.s.l. (‘Qurnat as Sawda’, the highest peak of the Middle East). Its slopes are 

relatively steep due to the short distance over which the topography changes (exceeding 3000 

m elevation within 60 km horizontal distance). The range receives a considerable 

precipitation, with more than 2000 mm on the highest summits (most of it is snow). In the 

high summit dominating the Mount-Lebanon range is the oromediterranean vegetation belt 

(starting altitude: 1900 - 2000 m). It is dominated by xerophytic dwarf thorny vegetation 

mostly from the Fabaceae (Astragalus spp. and Onobrychis cornuta) and Plumbaginaceae 

(Acantholimon spp.) families (Quézel & Médail 2003) and Juniperus excelsa, the only tree 

present at this altitude. This vegetation type, located above the current timberline, results from 

centuries of important grazing by domestic sheep and goats, after deforestation of Cedrus 

libani and Juniperus excelsa forests.  

 My study site was located in the central part of Mount-Lebanon, on the western 

external slopes, 20 km east from the Mediterranean Sea, at Ouyoun El Simane - Kfardebian 

(33°59’N, 35°51’E, altitude: 2000 m a.s.l.). Climate is Mediterranean with very high 

precipitation in winter and very low during summer (950 mm and 10 mm, respectively, with 

1720 mm of annual rainfall). Mean temperatures are 2°C in winter and 16°C in summer.  

 

2.2- Model species 

 

My model species, Onobrychis cornuta (L.) Desv., the ‘horned sainfoin’, is a spiny shrub 

forming flattened circular to elliptic cushions with highly entangled branches and many 

axillary peduncles differentiated into rigid sterile or flowering thorns exceeding the short 

green leaves. Fertile stems hold pubescent spineless pods of 6-8 mm long, and 10-15 mm 

bright purple-pink flowers (Tohmé & Tohmé 2014) blossoming from May to July and 

constituting a source of nectar for pollinator insects. Although the species has low palatability 

due to its small leaves and spines (Díaz et al. 2001), it may provide forage for grazing animals 

such as cattle and sheep, in the absence of more palatable species (Shahriary et al. 2012). At 
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my study site, O. cornuta is the dominant shrub acting as foundation species (Ellison et al. 

2005) sheltering most subordinate species of the community. Two different phenotypes, tight 

and loose (with no intermediate phenotype, Figure 15), with contrasting associations with 

subordinate species, occur in two contrasting topographic positions and soil conditions. Tight 

cushions, characterized by dense stem morphology, dominate convex topographies on shallow 

stony soils (stone cover = 47.56 ± 2.38 %, n = 80). Loose cushions, characterized by loose 

stem morphology with open areas within their canopies, dominate concave topographies on 

relatively deeper and less stony soils (stone cover = 37.13 ± 2.45 %, n = 80, t-test: <0.01). 

Contrasting patterns of association with other plant species along with contrasting cushion 

flower productions were observed. Tight cushions have a low cover of other species and a 

very high flower production, whereas loose cushions have a high cover of other species and a 

low flower production, suggesting a probable reproductive cost for loose ecotypes for hosting 

other species (Michalet et al. 2011; Schöb et al. 2014). The community includes up to 60 

species. Most frequent subordinates of the community are Bromus tomentellus Boiss., Festuca 

pinifolia (Hack.), Alyssum condensatum Boiss, Asyneuma rigidum (Wild.) Grossh subsp. 

sinai, Festuca sp., Asperula setosa Jaub. & Spach., Cruciata pedemontana (Bell.) and Prunus 

prostrata Labill.  

 44 



 
 

 
Figure 15. The two cushion phenotypes of Onobrychis cornuta: the loose phenotype with few flowers 

sheltering many subordinate species (on the left) and the tight phenotype with high number of flowers 

but no subordinate species (on the right). Photo taken at Ouyoun El Simane – Kfardebian (Mount-

Lebanon, Lebanon) in June 2010 by Patrick Al Hayek. 

 

 

2.3- Experimental design 

 

2.3.1- Are the differences in effects between O. cornuta phenotypes (and thus differences 

in associations with subordinate species) affected by changes in environmental 

conditions (drought stress and grazing disturbance)? [Chapter 5] 

 

In June 2012, I recorded cushion surface, height, penetration and flower number on 20 

randomly selected cushions of each phenotype (tight and loose, Phenotype treatment) in two 

exposures (north and south, Exposure treatment) in two grazing conditions (grazed and 

ungrazed, Grazing treatment; Figures 16, 17 and 18). I also recorded the number of 

individuals of all vascular species present in each cushion and in a paired open area (open 

area near the cushion in the same microtopographic position, with a surface similar to the 

paired cushion). 
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Figure 16. Location of the grazed (low dashed circle) and ungrazed (high dashed circle) plots at 

Ouyoun El Simane – Kfardebian in Mount-Lebanon (33°59’N, 35°51’E). The picture also shows the 

location on the North- and South-facing plots within each of the grazed and ungrazed areas. The 

picture was captured using Google Earth 7.1.2.2041. 

 

 
Figure 17. The grazed (upper part) and the ungrazed (lower part) plots. The dominating Poaceae is 

Bromus tomentellus. Photo taken at Ouyoun El Simane – Kfardebian (33°59’N, 35°51’E, Mount-

Lebanon, Lebanon) in June 2013 by Patrick Al Hayek. 
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Figure 18. The North-facing (upper part) and the South-facing (lower part) grazed plots. Photo taken 

at Ouyoun El Simane – Kfardebian (33°59’N, 35°51’E, Mount-Lebanon, Lebanon) in June 2012 by 

Magda Bou Dagher-Kharrat. 
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ABSTRACT 

Few studies have examined consequences of ecotypic differentiation within alpine foundation 

species for community diversity and their feedbacks for the foundation species’ fitness. 

Additionally, no study has quantified ecotypic differences in competitive effects in the field 

and in controlled conditions to disentangle genetic from plasticity effects in 

foundation/subordinate species interactions. We focused on a subalpine community of the 

French Pyrenees including two phenotypes of a cushion-forming species, Festuca gautieri: 

tight cushions in dry convex outcrops, and loose cushions (exhibiting high subordinate 

species richness) in wet concave slopes. We assessed, with field and shadehouse experiments, 

the genetic vs. plasticity basis of differences in: (1) cushion traits and (2) competitive effects 

on subordinates, and (3) quantified community feedbacks on foundation species’ fitness. We 

found that trait differences across habitats had both genetic and plasticity bases, with stronger 

contribution of the latter. Field results showed higher competition within loose than tight 

phenotypes. In contrast, shadehouse results showed higher competitive ability for tight 

phenotypes. However, as changes in interactions across habitats were due to environmental 

effects without changes in cushion effects, we argue that heritable and plastic changes in 

competitive effects maintain high subordinate species diversity through decreasing 

competition. We showed high reproduction cost for loose cushions when hosting subordinates 

highlighting the occurrence of community feedbacks. These results suggest that phenotypic 

differentiation within foundation species may cascade on subordinate species diversity 

through heritable and plastic changes in the foundation species’ competitive effects, and that 

community feedbacks may affect foundation species’ fitness. 

 

Keywords  

Biotic interactions · Competition · Phenotypic plasticity · Facilitation · Feedback effects 
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INTRODUCTION 

The evolutionary processes of local adaptation and eco- logical speciation in alpine 

environments have been largely addressed through the study of genetic differentiation in 

adaptive traits, which is likely because of the steepness of the environmental gradients 

(Billings 1974; Körner 2003; Choler et al. 2004). Many mountain ranges have provided 

numerous examples of ecologically differentiated plant taxa at a very small scale of 

environmental variation, in particular along topographic and soil gradients (Choler and 

Michalet 2002; Michalet et al. 2011; Lekberg et al. 2012; Liancourt et al. 2013). For example, 

Liancourt et al. (2013) showed, in the Mongolian steppe, differences in stress tolerance within 

the dominant grass species Festuca lenensis along a topographic gradient with a more stress-

tolerant phenotype occurring in steep and dry upper slopes and a less stress-tolerant 

phenotype occurring in wetter and more productive lower slopes. Heterogeneous soil 

environments are considered particularly prone to sympatric phenotypic differentiation, 

probably due to increased reproductive isolation (Sambatti and Rice 2006; Lekberg et al. 

2012). 

 Of particular interest, from an evolutionary ecology perspective, is genetic 

differentiation within foundation species (Ellison et al. 2005), because of increased chances of 

consequences at the community and ecosystem levels (Whitham et al. 2006; Gibson et al. 

2012). Genetic effects have been shown to translate at higher complexity levels through biotic 

interactions (review by Whitham et al. 2006), as demonstrated by many studies of interactions 

across trophic levels. In contrast, studies of interactions within trophic levels (e.g. within plant 

communities) remain scarce (Bailey et al. 2009; but see Adams et al. 2011; Michalet et al. 

2011; Gibson et al. 2012) compared with across trophic-level studies, likely due to the diffuse 

nature of plant–plant interactions and the rarity of feed- back effects (Bronstein 2009; 

Michalet et al. 2011; Schöb et al. 2014). Plant community genetic studies have mainly 

focused on competition or allelopathy (Lankau and Strauss 2007; Bossdorf et al. 2009; 

Silvertown et al. 2009), while evolutionary questions associated with positive interactions 

among plants (i.e. facilitation) such as nurse plant effects remain less documented (but see 

Valiente-Banuet et al. 2006; Liancourt and Tielbörger 2011; Michalet et al. 2011; Thorpe et 

al. 2011; Butterfield et al. 2013). Facilitative interactions are known to have strong effects on 

community and ecosystem properties, including diversity, structure, productivity and stability 

(Michalet et al. 2006; Callaway 2007; Brooker et al. 2008; Le Bagousse-Pinguet et al. 2014a). 

Thus, there is a high potential for exploring how phenotypic differentiation within foundation 

plants may affect community structure through facilitative interactions, and in particular along 
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local soil gradients known to be particularly prone to genetic differentiation. 

 Michalet et al. (2011) showed that variation in competitive and facilitative effects 

among phenotypes of Geum rossii had strong consequences on species diversity for alpine 

communities in Northern Arizona, and that beneficiary species had feedback effects acting as 

selective pressure for the cushion plant. In highly physically disturbed concave volcanic 

slopes, they observed a phenotype of G. rossii characterised by loose stem morphology and 

strong facilitative effects on other species, and in adjacent more stable convex slopes they 

found a competitive phenotype, characterised by dense stem morphology. However, because 

the very low growth rate of this alpine cushion plant did not allow them to manipulate adults 

in reciprocal transplantations or in common garden experiments, Michalet et al. (2011) only 

compared the effects of each phenotype on other species in their own environment. Thus, they 

could not clearly separate heritable from environmental effects in the foundation/beneficiary 

interactions, and thus fully address the genetic basis of the processes driving changes in 

community diversity and composition. Indeed, an increase in facilitation from stable convex 

slopes to disturbed concave slopes may be due to either genetically based variation in nurse 

effects, or to nurse trait plasticity induced by changing environments, as well as direct 

environmental effects on target beneficiary species (Michalet et al. 2014). 

 We conducted our study in subalpine grassland com- munities of the French Pyrenees. 

Alpine communities are particularly prone to positive interactions (Callaway et al. 2002), thus 

are suitable systems with which to explore how phenotypic differentiation within foundation 

plant species may affect community structure through facilitative interactions. Competition 

and facilitation co-occur in the studied system along a natural soil moisture gradient and are 

directly related to species richness (Le Bagousse-Pinguet et al. 2014b). Also, phenotypic 

variation within a foundation grass species (Festuca gautieri subsp. scoparia Hackel and 

Kerner) has been observed along a soil moisture gradient (Le Bagousse-Pinguet et al. 2014b). 

A ‘tight’ phenotype with dense cushions with short stiff leaves occurs on dry soils in convex 

topographical positions (high-stress habitat), and a ‘loose’ phenotype with cushions 

characterised by open stem morphology and long soft leaves occurs on wetter soils in concave 

topographies (low-stress habitat). Le Bagousse-Pinguet et al. (2014b) showed that the tight F. 

gautieri phenotype was more drought tolerant than the loose phenotype. In the same subalpine 

system they transplanted tillers of each phenotype along a complex gradient of soil water 

availability. They showed that the probability of survival of the loose phenotype was reduced 

by over 50 % when soil moisture decreased from 40 to 15 %, whereas there was no change in 

survival of the tight phenotype. Considered together, the contrasting habitat distribution and 
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experimental evidence suggest that the two phenotypes correspond to sympatric ecotypes. 

Both phenotypes can reach an adult size in a very short time in a shadehouse, allowing an 

assessment of a potential heritable component of differences in competitive and facilitative 

effects. 

 Here, we assess whether changes in subordinate species diversity among habitats and 

phenotypes are driven by heritable changes in foundation/subordinate species interactions, 

and thus, evaluate the genetic basis of the ecological processes acting in this subalpine 

community. Additionally, we assess the potential evolutionary feedbacks of these changing 

interactions by quantifying the effects of subordinates on the phenotypes’ fitness. Specifically, 

we aimed to answer these main questions, each related to one of the three fundamental 

premises of a full community genetics perspective (Whitham et al. 2006): 

. What are the relative contributions of genetic differentiation and phenotypic plasticity in the 

morphological trait divergences?  

. To what extent do heritable differences in foundation species’ morphological traits between 

phenotypes contribute to changing cushion effects on subordinate species across 

habitats?  

. Do subordinate species have feedback effects on the fitness of the foundation species?   

 

 Variation in phenotypic traits was first measured both in the field and in a shadehouse in 

order to assess the heritability of field phenotypic variation. In the shadehouse, morphological 

traits of both phenotypes were measured under contrasting water stress conditions mimicking 

natural environmental variation, in order to also quantify the contribution of plasticity in 

changing traits among phenotypes and environments (see Online Resource 1 for the design). 

Second, we quantified changes in foundation/subordinate species interactions among 

phenotypes, both across habitats in the field and in the shadehouse in constant environmental 

conditions, in order to assess the likely heritability of changes in interactions (Online 

Resource 1). Third, the potential feedback effects of subordinate species on the cushion 

species’ fitness were quantified in the field (Online Resource 1). 

 

 

 52 



 
 
MATERIALS AND METHODS 

Study system and target species 

The experimental site is located in the western Pyrenees, 100 km from the Atlantic ocean at 

La Pierre Saint-Martin pass (42°58′N, 0°45′W, altitude 1,744 m a.s.l., Pyrénées-Atlantiques, 

France). The climate is temperate oceanic; the mean winter temperature is −2.2 °C and the 

mean summer temperature is 11.5 °C; the mean annual precipitation is 2,850 mm with the 

highest rainfall occurring in winter. Festuca gautieri is a very distinctive dwarf grass forming 

circular to elliptic cushions of thin bright green leaves with yellowish-green inflorescences. 

Flowering occurs from July to August. It is a foundation species typical of subalpine and 

alpine grasslands on rocky calcareous soils in the entire Pyrenees chain (Saule 1991). This 

species only dominates grasslands on steep scree slopes under low grazing conditions in the 

studied communities, likely because of its low grazing tolerance. Two distinct phenotypes of 

cushions occur in the system, under contrasting topographical and soil conditions (Le 

Bagousse-Pinguetet al. 2014b). A tight phenotype dominates con- vex topographical habitats 

with shallow, stony (stone cover = 73.6 ± 3.7 %, n = 30) and relatively dry soils [soil 

volumetric water content measured with a ML3X ThetaProbe (Delta-T Devices, Cambridge, 

UK) 3 days after a rain event, 13.10 ± 1.28, n = 15]. A loose phenotype dominates concave 

topographical habitats with deep, less stony (stone cover = 53.0 ± 3.4 %, n = 30, t-test P < 

0.001) and relatively wet soils (soil volumetric water content, 27.73 ± 1.74, n = 15, t-test P < 

0.001). The scale of habitat heterogeneity was less than 1 m, which allows both phenotypes to 

exist side by side. Cushions with inter- mediate traits are also observed in intermediate 

ecological conditions, but they are less frequent than the two extreme phenotypes [cushion 

frequency measured in ten 10-m-long transects, 10.4 % for intermediate cushions vs. 66.7 % 

for tight phenotypes and 22.9 % for loose phenotypes; our field phenotype classification was 

based on a leaf pungency index varying between 0 (not pungent) and 5 (very pungent); see 

Online Resource 2]. We also observed contrasting patterns of association with other species 

along with contrasting flower productions of the cushions. Loose phenotypes had a high cover 

of other species and a low flower production, whereas tight phenotypes had a low cover of 

other species and a very high flower production, suggesting a potential reproductive cost for 

loose phenotypes (see Online Resource 1, 2 for the method). Most frequent subordinate 

species (i.e. species associated with a community dominant and with a lower abundance) of 

the community were Agrostis capillaris L., Galium pumilum Murray, Campanula rotundifolia 

L., Alchemilla conjuncta Bab., Lotus corniculatus L., Festuca rubra L. and Trifolium 

pratense L. 
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Differences in cushion traits between F. gautieri phenotypes 

In order to quantify field variation in cushion traits across phenotypes and habitats, we 

measured maximum leaf length, cushion penetration [an index of cushion compact- ness and 

interference (R. M. Callaway, unpublished data)], leaf thickness and number of inflorescences 

on a total of 60 cushions (30 tight and 30 loose phenotypes) from our site (see Online 

Resource 1). In July 2012, cushion penetration was measured by loosely introducing a metal 

ruler vertically within the cushion. Leaf thickness was measured to a precision of 0.01 mm 

using a digital micrometer (TESTWELL, Saint-Ouen, France). Measurements were done on 

three fresh leaves per cushion, and on the middle length of the leaves. Number of 

inflorescences was counted on the whole cushion surface. 

 A shadehouse experiment was set up to quantify the contribution of heritability and 

plasticity in changing traits among phenotypes and environments (see Online Resource 1). 

The shadehouse was located at the INRA station of Cestas-Pierroton, France (44°44′N, 

0°46′W; 60 m a.s.l.). Replicates of the two phenotypes were grown for 26 months in 

contrasting environmental conditions mimicking the two natural habitats. In November 2010, 

we collected 15 F. gautieri cushions (hereafter ‘genotypes’) of each phenotype at our site. We 

chose mature and discrete cushion individuals in order to increase the probability of selecting 

genetically different cushions. Each cushion was planted in a 4-L pot with a soil-less mix of 

peat moss, perlite, and gravels in a 1:1:0.5 proportion. Pots were stored during the first winter 

in an unheated greenhouse. In late April 2011, i.e. at the beginning of the treatments, the 

experiment was set up in a shadehouse transmitting 50 % of light without intercepting 

precipitation, protecting plants from direct sunlight and air desiccation. Each cushion was 

separated into 20 individual tillers of from five to ten leaves. Each tiller was standardised by 

cutting the roots to a length of 5 cm and planted into a separate pot (total n = 600). Pots were 

then randomly placed on benches within the shadehouse before treatments. 

 We applied a watering treatment with ten replicates of each genotype in each treatment 

combination (phenotype × watering) to assess the potential plastic responses of phenotypes to 

varying soil moisture conditions. It is important to note that our goal was not to exactly mimic 

the environmental conditions of the natural habitats of each phenotype, but rather to assess the 

response of the two phenotypes to the occurrence of a weak drought stress. The watering 

treatment was applied in 2011 and 2012 from late April to late September and in 2013 from 
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late April to the end of the experiment (late June 2013) by irrigating half of the pots with 1 L 

of tap water (watered pots) three times a week and the other half once a week only (dry pots). 

Survival and five cushion traits were recorded for all pots at the beginning and the end of each 

growing season (in April and October—intermediate measurements) in 2011 and 2012, and at 

the end of the experiment, late June 2013 (final measurement). As survival was very high in 

all treatments, only final growth measurements are presented here. Maximum leaf length, 

cushion penetration and cushion leaf thickness were measured as in the field. We also 

quantified cushion surface simplified as an elliptic surface by measuring cushion length and 

width, and cushion leaf density by counting all leaves within a circular ring of 6 cm2. Cushion 

surface is a proxy of cushion growth rate as all cushion individuals had a similar size at the 

beginning of the experiment and there was very low leaf mortality during the experiment, 

even during winter (P. Al Hayek, personal observation). 

 

Differences in cushion effects between F. gautieri phenotypes 

A field cushion-removal experiment was conducted to quantify the potential variation in 

cushion facilitative and/ or competitive effects on subordinate species across phenotypes and 

habitats (Online Resource 1). Three target species with contrasting drought-tolerance abilities 

and habitat distributions were used to encompass a large and representative panel of possible 

responses to neighbours (Brooker et al. 2008). We chose two drought-intolerant target 

species, i.e. the loose fescue phenotype itself and A. capillaris (its most frequent subordinate 

species), and a drought-tolerant target, the tight fescue phenotype itself. Both fescue 

phenotypes were chosen as targets to also assess responses to neighbours, since both the effect 

of a neighbour on a tar- get individual and the response of a target individual to the effect of a 

neighbour are important components of species competitive/facilitative abilities (Goldberg 

1990; Liancourt et al. 2009; Le Bagousse-Pinguet et al. 2013). We used naturally occurring 

individuals for A. capillaris and trans- plants for the two F. gautieri phenotypes. In June 

2011, we selected five sites in a northern slope with a distance of at least 100 m between sites. 

In each site, six cushions of each phenotype that included one discrete individual of A. 

capillaris were selected. For half of the cushions (three tight and three loose at each site), we 

removed by hand the aboveground parts of F. gautieri cushions within a circular area of 15 

cm in diameter centred on the target individual of A. capillaris. Then, one individual of each 

F. gautieri phenotype was transplanted at 5 cm from the A. capillaris individual, both within 

removed and control cushions of both phenotypes. Transplanted individuals of both F. 
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gautieri phenotypes were randomly collected at the site in at least ten cushions of each 

phenotype. Each transplanted individual had from five to ten leaves. All target individuals 

were tagged with metal rings. Thus, there were five replicates of each combination of the 

three treatments (cushion phenotype, removal and target species). In late July 2012, we 

recorded survival, measured height and leaf number of all target individuals. All target 

individuals were harvested for aboveground biomass measurements. Harvested target 

individuals were dried for 2 days at 70 °C and weighed. Survival was expressed in 

percentages (0, 33, 66 or 100 %) per treatment combination (cushion phenotype and removal) 

and per site, and growth data were averaged per treatment combination and per site before 

statistical analyses. 

 To quantify heritable differences in competitive/facilitative effects and responses 

among phenotypes, a pot experiment was set up in the shadehouse, from early April to late 

November 2012 (Online Resource 1). We manipulated cushion presence and phenotypes 

(neighbour treatment) and target identity. The neighbour treatment was applied by planting 

targets either within a tight cushion phenotype or within a loose cushion phenotype, or alone 

without a cushion. We used six different genotypes of each cushion phenotype with six 

replicates per cushion genotype and one cushion per pot (a total of 36 pots per phenotype plus 

36 pots with no cushion). Pots were randomly distributed on benches in the shadehouse at the 

beginning of the experiment and watered three times a week. The 72 cushions were prepared 

before the experiment by growing them in separate pots from small tillers of from five to ten 

leaves to a cushion size of 15 cm in diameter between late April 2011 and early April 2012. 

As in the field competition experiment, we planted the three different targets—the tight and 

the loose phenotype of F. gautieri, and A. capillaris—in each pot. In each with-neighbour pot, 

the three target individuals were planted within the cushion canopy with an equal distance 

between them (5 cm). For the two fescue phenotypes transplanted as targets within and with- 

out cushions, we used six different genotypes per phenotype with six replicates per genotype. 

A replicate of target genotype was planted in each cushion genotype. This genotypic sampling 

was done in order to maximise differences in competitive ability within phenotypes, but was 

not used as a statistical treatment because of insufficient replication. Survival was recorded at 

the end of the experiment in late November 2012. All target individuals were harvested for 

aboveground biomass measurements. Harvested plants were dried for 2 days at 70 °C and 

weighed. Survival was expressed in percentages (0, 16.7, 33.3, 50, 66.7, 83.4 or 100 %) per 

target genotype and treatment combination. Biomass measurements were averaged per target 

genotype in each treatment combination before statistical analyses. In order to quantify 

 56 



 
 
responses of the three target species to both cushion phenotype effects, we calculated the 

relative interaction index (RII) for survival and biomass performances, following Armas et al. 

(2004): 

 

where P+neighbour and P−neighbour represent target performances (survival and biomass) in 

the presence and absence of cushions, respectively. This index is symmetrical around zero (no 

significant interaction), and has defined limits between –1 and +1. Negative values indicate 

competition whereas positive values reflect facilitation. 

 

Community feedbacks 

We assessed the potential cost of hosting subordinate species for F. gautieri cushions by 

conducting a removal of subordinate species experiment to test the hypothesis that 

subordinate species reduce the inflorescence production of loose cushions. In late June 2011, 

we randomly selected 40loose cushions and removed all subordinate species growing within a 

circular area of 20 cm in diameter (surface 314 cm2) in half of the selected loose cushions. In 

late June 2012, regrowth of subordinate species was again removed in the 20 loose treated 

cushions. In late July 2012, we counted the number of inflorescences produced by all 

cushions within the delimited circular plot. 

 

Statistical analyses 

To analyse field differences in cushion traits among phenotypes (tight and loose), we 

conducted a Student’s t-test with cushion phenotypes as treatment and the four field traits as 

response variables. Differences in cushion traits in the shadehouse experiment were analysed 

using a two- way ANOVA model with phenotype and watering as treatments and the five 

cushion traits as the response variables. For the removal of F. gautieri field experiment and 

for each target species separately, we conducted a two-way ANOVA with phenotype and 

removal as treatments, and percentage of target survival and leaf number as dependent 

variables. For the shadehouse competition experiment, we conducted separate analyses per 

target species for survival and growth data, and one analysis grouping target species for RII 
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data. We conducted one-way ANOVAs (followed by Tukey tests when necessary) on target 

percentage of survival and biomass with neighbour presence and identity as treatment (no 

neighbour, tight phenotype and loose phenotype), and a two-way ANOVA on the RII for 

survival and aboveground biomass with cushion phenotype and target as treatments. We used 

one-sample t-tests to detect significant deviation of RII values from zero (i.e. no cushion 

effect on target performance). For the removal of subordinate species experiment we 

compared the inflorescence production of control and removed loose cushions with a 

Student’s t-test. Dependent variables were checked for normality and log (cushion traits and 

target growth) or arcsine root transformed (target survival) before parametric tests. All 

statistical analyses were done using R (R Development Core Team 2012). 

 

 

RESULTS 

Differences in field traits between the two cushion phenotypes were highly significant for all 

measured traits (P < 0.001; Table 1). Loose phenotypes had 25 % longer leaves, and 100 % 

higher cushion penetration than tight phenotypes, whereas the latter had ten times more 

inflorescences and 20 % thicker leaves than the former. 

 In the shadehouse, after two growing seasons, F. gautieri maximum leaf length, 

cushion penetration, cushion surface and cushion leaf density were highly significantly 

affected by both the phenotype and watering treatments (Fig. 1a, b, d, e, respectively).  

 

Table 1. Mean trait values of the two phenotypes (tight and loose) of Festuca gautieri measured in the 

field (n = 30) and significance of phenotype effect determined by t-tests 
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Leaf thickness was highly affected by the phenotype treatment only (Fig. 1c), but for all other 

traits the effect size was stronger for the watering treatment than for the phenotype treatment. 

For example, leaves were 5 % longer for loose phenotypes compared to tight ones, whereas 

watered cushions had 17 % longer leaves than dry ones. Penetration was 15 % higher in loose 

cushions than in tight ones, but 25 % higher in watered cushions than in dry ones. Similarly, 

cushion surface was 8.5 % larger for loose than for tight cushions, but 20 % larger for watered 

than dry cushions. Leaf density was 9 % higher for loose cushions than for tight ones, 

whereas watered cushions had12 % higher leaf density than dry ones. In contrast with the 

other four traits, tight cushions had 7 % thicker leaves than loose cushions, but there was no 

difference between watered and dry cushions. Nevertheless, there was a significant phenotype 

× watering interaction (P < 0.05) for cushion leaf length, penetration and surface, and this 

interaction was even highly significant for leaf density (P < 0.001). This interaction was due 

to a higher effect of watering on those traits for the loose cushions than for the tight ones, 

showing that loose cushions were more plastic than tight ones. Even so, this interaction was 

not observed for leaf thickness (Fig. 1c). To summarise, trait differences between phenotypes 

were explained by both genetic and plasticity effects, but with a stronger contribution of the 

latter. 
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Fig. 1a–e Shadehouse trait measurements of tight and loose phenotypes of Festuca gautieri, with and 

without watering. Data shown are means + SE (nloose-watered and ntight-watered = 15, nloose-dry = 13, ntight-dry = 

14). Significant results of two-way ANOVAs on the effects of phenotype (P), watering (W) and their 

interactions are shown for each trait. *P < 0.05, ***P < 0.001 

 

 In the field cushion-removal experiment, target survival was higher in the loose 

cushion habitat than in the tight one for both A. capillaris and the loose target fescue 

(phenotype effect; Fig. 2a, e). The phenotype effect was very strong for A. capillaris, with 

survival in the tight cushion habitat three times lower than in the loose one. The tight fescue 

target survived less in the loose cushion habitat than in the tight cushion, and also less with 

neighbours than without neighbours (significant phenotype and removal effects; Fig. 2c). 

Additionally, there was a significant phenotype × removal interaction because the negative 

effect of neighbours on the tight fescue target was much stronger in the loose cushion habitat 

than in the tight one (Fig. 2c). For target leaf number there was a marginally significant higher 

performance in the loose cushion habitat than in the tight one for A. capillaris (Fig. 2b), but 
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no differences among habitats for both tight and loose fescue targets (Fig. 2d, f, respectively). 

For A. capillaris there was also a significant removal effect and marginally significant 

phenotype × removal interaction. Competition was higher for A. capillaris in the loose 

cushion habitat than in the tight one, with a much higher leaf number without neighbours in 

the former than in the latter but no difference with neighbours across habitats (Fig. 2b). To 

summarise, these results show that the tight cushion habitat was more stressful for A. 

capillaris, and that the loose cushion habitat was more competitive for both the tight fescue 

and A. capillaris targets. 

 

Fig. 2 Effect of cushion removal, survival and leaf number of a, b Agrostis capillaris, c, d tight F. 

gautieri phenotype, e, f loose F. gautieri phenotype in the habitats of the two phenotypes of F. 

gautieri. Data shown are means + SE (n = 5). Significant results of two-way ANOVAs on the effects 

of phenotype (P), removal (R) and their interactions are indicated. (*)P < 0.1, *P < 0.05, **P < 0.01, 

***P < 0.001 

 In the shadehouse competition experiment, there was a significant neighbour effect for 

the survival of the loose fescue target with a higher survival without neighbour than with 

neighbour (Fig. 3e). Additionally, RII results showed that competition for survival was more 
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intense within the tight fescue cushions than within the loose ones (significant cushion 

phenotype effect; Fig. 4a). There were also significant differences in competitive responses 

among the three targets (highly significant target effect for RII survival). The loose fescue 

phenotype was the worst response competitor for survival and there were no significant 

differences between the two other targets [Tukey test for the target effect–A. capillaris (a), 

tight F. gautieri (a), loose F. gautieri (b); Fig. 4a]. However, this effect was mostly found in 

the tight fescue cushions as shown by the marginally significant cushion phenotype × target 

interaction (Fig. 4a). For biomass there was a significant neighbour effect for the three targets 

due to a strong decrease in target biomass when grown within cushions (Fig. 3b, d, f). 

However, in contrast to survival, the worst response competitor was A. capillaris, which had 

the lowest RII values (target effect; Fig. 4b) and there were no differences in competitive 

effects between both fescue phenotypes. To summarise differences in competitive abilities 

between the two fescue phenotypes, results on survival showed that the tight phenotype was 

the strongest effect competitor and the loose phenotype the weakest response competitor. 
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Fig. 3 Survival and biomass  of a, b A. capillaris, c, d tight F. gautieri, and e, f loose F. gautieri 

targets in the three neighbouring conditions: no neighbour (Open), within tight F. gautieri cushions 

(Tight), and within loose F. gautieri cushion of the shadehouse competition experiment (Loose). Data 

shown are means + SE (n = 6). Results of Tukey tests are shown at the top of error bars when a 

significant neighbour effect occurs. Significant results of one-way ANOVAs on neighbouring effects 

are indicated. *P < 0.05, **P < 0.01, ***P < 0.001 
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 The removal of subordinate species within loose cushions evidenced a substantial cost 

of hosting other species for loose cushions, because loose cushions with subordinate species 

removed produced almost twice as many inflorescences as controls (0.42 ± 0.09 and 0.23 ± 

0.05 inflorescences cm-2, respectively; P = 0.04). However, loose cushions with subordinate 

species removed produced 75 % less inflorescences than tight cushions (1.84 ± 0.25 

inflorescences cm-2 for tight cushions; P = 0.002). 

 

Fig. 4 Relative interaction index (RII) for a survival (RIIsurvival) and b biomass (RIIBiomass) of the three 

targets (A. capillaris, tight F. gautieri and loose F. gautieri) calculated for both cushion phenotypes as 

neighbours. Data shown are means + SE (n = 6). Significant results of two-way ANOVAs on cushion 

phenotype (C), target (T), and their interactions are indicated above panels and results of one-sample t-

tests are shown below error bars. (*)P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001 

 

DISCUSSION 

Our shadehouse trait measurements showed that field morphological differences between 

phenotypes had both genetic and phenotypic plasticity bases, with an overall higher 

contribution of the latter. Our shadehouse competition experiment showed that heritable 

differences in cushion traits drove contrasting interactive effects and responses, with the 

highest competitive ability for the tight fescue phenotype. However, our field competition 
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experiment provided opposite results, with higher competition found in the loose (low-stress 

habitat) rather than in the tight habitat (high-stress habitat). Together, these results suggest 

that field differences in cushion traits and interactions with other species have both genetic 

and phenotypic plasticity bases, but that heritable interactions contribute to changes in 

subordinate species diversity across habitats in a complex way. Finally, our removal of 

subordinate species experiment showed that loose phenotypes pay a cost for hosting other 

species. 

 

Phenotypic differentiation within Festuca gautieri cushions 

The five measured traits remained significantly different between both F. gautieri cushion 

phenotypes at the end of the 2-year shadehouse experiment, suggesting that intraspecific 

morphological variation observed across natural habitats may have partly a genetic basis. This 

is consistent with the experiment of Le Bagousse-Pinguet et al. (2014b) who found that young 

transplants of the two phenotypes of F. gautieri had contrasting survival responses along a 

soil moisture gradient occurring in the same field system. Both genetic variability and 

phenotypic plasticity are known to explain trait variation in heterogeneous environments 

(Pigliucci 2001; Byars et al. 2007; Grassein et al. 2010) and we acknowledge that reciprocal 

transplant experiments conducted in field conditions are necessary to reach straightforward 

conclusions on the heritability of adult trait differences suggested by our shadehouse 

experiment. Although common gardens are commonly used to experimentally separate 

genetic from phenotypic plasticity effects (Clausen et al. 1940; Schmid and Dolt 1994), 

maternal effects may persist in short-term experiments (Schmid and Dolt 1994). We used 

cuttings of F. gautieri in our shadehouse experiments, which did not clearly allow the ruling 

out of maternal effects. However, maternal effects on offspring phenotypes - which are 

generally more prevalent in juvenile life history stages relative to adult life history stages 

(Roach and Wulff 1987) - are likely to be reduced by selecting mature individuals 

(Ravenscroft et al. 2014). Thus, trait differences among phenotypes are likely in part due to 

genetic effects. 

 In our shadehouse experiment, watering also had a highly significant effect for all 

traits except leaf thickness, with watered cushions having longer leaves, and higher 

penetration, surface and leaf density than dry ones. Thus phenotypic plasticity also contributes 

to the observed morphological variation across habitats. Additionally, the significant 
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phenotype × watering interaction for maximum leaf length, cushion penetration, surface and 

leaf density showed that loose cushions are more plastic than tight ones. Interestingly, genetic 

and phenotypic plasticity effects acted in the same direction, with overall the strongest trait 

differences observed between dried tight phenotypes and watered loose phenotypes. 

Additional heritable and environmental effects were also found by Vitasse et al. (2009) in the 

Pyrenees mountain range for phenological traits of an oak and an ash species. In contrast, they 

found counteracting heritable and environmental effects for a beech species. 

 

Effects of F. gautieri phenotypes on subordinate species and consequences for diversity 

The shadehouse trait measurements and competitive experiment suggest that a heritable 

component may also explain differences in competitive ability among phenotypes. Tight 

cushions had a higher competitive ability (higher competitive effect - likely through 

interference mechanisms - and response) than loose cushions under the same environmental 

conditions. Contrasting penetration between tight and loose cushions is mainly related to 

higher leaf thickness and stiffness. Thus tight, thick and stiff leaves of tight cushions can 

impede the recruitment of other species. Previous studies have shown that phenotypic 

architectural variation in foundation species may induce contrasting competitive and 

facilitative effects on other plant species (Callaway et al. 1991; Pugnaire et al. 1996; Rudgers 

and Maron 2003; Michalet et al. 2011). Our results are consistent with Michalet et al. (2011) 

who showed that heritable differences in the tightness of two phenotypes of the alpine cushion 

species Geum rossii were related to differences in their effects on subordinate species, with 

also a higher competitive effect for the tight than for the loose phenotypes. Similarly, 

Callaway et al. (1991) have shown in Californian oak savannah that differences in root 

density among phenotypes of Quercus douglasii induced contrasting interference effects on 

their herbaceous understories. However, to our knowledge, our study is the first to show 

differences in competitive effects among different phenotypes of a foundation species in 

controlled similar environmental conditions. 

 Because we did not mimic field variation in water availability in our shadehouse 

competition experiment, we were not able to directly assess the plasticity of competitive 

effects across phenotypes’ habitats. However, results of the shadehouse trait measurements 

allow us to predict that with increasing water availability from the tight phenotype’s habitat to 

the loose one, the competitive effect ability of both phenotypes should decrease since both 
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showed an increase in cushion penetration with watering. This effect should be even stronger 

for the loose phenotype because it showed higher trait plasticity than the tight one. With 

watering, cushions had softer leaves allowing a higher cushion penetration and thus a 

decrease in interference effect. 

 The results of the two shadehouse experiments suggest the prediction that in the field, 

the highest cushion competitive effect should be observed for the tight phenotype in its dry 

habitat and the lowest for the loose phenotype in its wet habitat, and thus, that competition 

should likely decrease from the former to the latter habitat. However, our field competition 

experiment provided an opposite result. Competition significantly increased for the survival 

of tight fescue targets only, and weakly increased for leaf number only for A. capillaris. 

Additionally, we did not find any facilitation in this experiment for these two response 

variables. An increase in competition from the dry convex habitat of the tight phenotype 

towards the wet concave habitat of the loose phenotype is consistent with Grime (1974) and 

the stress gradient hypothesis (Bertness and Callaway 1994), models that predict an increase 

in competition with decreasing stress. Thus, should we conclude that varying interactions and 

species richness across habitats in natural conditions are not influenced by heritable and 

plastic differences in competitive effects among phenotypes? 

 In order to answer this crucial question, we need to dis- entangle changes in cushion 

effects from changes in target responses across habitats. Michalet et al. (2014) have recently 

proposed a conceptual framework to partition net interactions along stress gradients. They 

showed that the switch from competition to facilitation that has been recurrently demonstrated 

from subalpine to alpine communities (e.g. Callaway et al. 2002) was due to two different 

processes that needed to be disentangled. The increase in competition from low alpine to 

subalpine communities is due to a neighbour trait effect, defined as a decrease in the target 

response with neighbours with decreasing stress due to an increase in the competitive effect of 

the neighbours [consistent with Grime’s (1974) model]. In contrast, the increase in facilitation 

from low alpine to high alpine communities is due to an environmental severity effect, 

defined as a decrease in the performance of the target species without neighbours with 

increasing stress, without changes in the facilitative effect of the neighbours. In our field 

experiment conducted in subalpine conditions we showed that the increase in competition 

from the stressful convex habitat of the tight phenotype towards the more benign concave 

habitat of the loose phenotype was either due to neighbour trait or environmental severity 

effects depending on the target species and the response variable. For leaf number, for which 

there was only a marginally significant increase in competition from tight (high stress) to 
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loose (low stress) cushion habitats for A. capillaris, this increase in competition was due to an 

environmental severity effect (see Fig. 2b), with no changes in the three targets performance 

with neighbours. For survival, the increase in competition was significant only for the tight 

fescue target and was due to a neighbour trait effect, whereas for the two other targets 

performance with and without neighbours increased towards the loose cushion habitat, due to 

decreasing environmental severity (i.e. evidence of an environmental severity effect). Thus, 

we conclude that for the two target species naturally abundant in the loose cushion habitat, 

where species richness was the highest within cushions, there were only environmental 

severity effects. This result is not consistent with Grime’s (1974) model and the meta-analysis 

of Michalet et al. (2014), which predicted or showed, respectively, that an increase in 

competition in subalpine habitats with decreasing stress is due to an increase in the negative 

effect of the dominant competitor (i.e. a neighbour trait effect). We argue that competitive 

effects did not increase in the field from tight to loose cushion habitats because of both the 

counteracting heritable and plastic effects that were evidenced in the two shadehouse 

experiments (decrease in competitive effects due to phenotypes and watering). In other words, 

in the absence of these heritable and plastic effects inherent to this foundation species, 

competition should have increased more strongly from the stressful habitat of the tight 

phenotype to the benign habitat of the loose phenotype, consistent with Grime’s (1974) 

competition theory and the meta-analysis of Michalet et al. (2014). However, this hypothesis 

remains to be tested in reciprocal transplant experiments including neighbour removal. 

Finally, the decrease in competition due to these genetic and plastic effects suggested by our 

results likely contribute to the high species richness occurring in the loose cushions. 

 

Feedback effects of the subordinate species on the foundation species’ fitness 

We found evidence of a cost of hosting other species for F. gautieri. The removal of 

subordinate species within loose cushions significantly increased the flower production of F. 

gautieri. Loose cushions in which we removed subordinate species produced twice the 

number of inflorescences as control loose cushions. Negative feedback effects of subordinate 

species have been found on water status, growth, and reproductive output of their host nurse 

shrub Ambrosia dumosa in the Mojave Desert (Holzapfel and Mahall 1999). Negative 

feedback effects of recipient species have also been found on the reproductive output of nurse 

cushion plants G. rossii (Michalet et al. 2011) and Silene acaulis (Cranston et al. 2012). In 

contrast, in semi-arid Spain, Pugnaire et al. (1996) found a benefit for the nurse shrub Retama 
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sphaerocarpa of hosting Marrubium vulgare. Shrubs hosting the forb had higher biomass and 

nitrogen contents in branches than shrubs alone. In an evolutionary context, it is crucial to 

quantify not only the costs but also the benefits of hosting other species (Bronstein 2009). 

Using an individual-based model, Michalet et al. (2011) showed that the inclusion of a benefit 

of hosting other species strongly increased the selective pressure of feedback effects for the 

alpine cushion foundation species’ genetic differentiation. However, like in this study, they 

did not find evidence for this benefit that was only hypothetical in their model. However, a 

benefit may exist for other traits than flowering output, which was not explored in both 

studies. For example, Schöb et al. (2014) found in an intercontinental study assessing 

feedback effects of alpine beneficiary species on their benefactors that the richness of 

cushion-associated species had positive effects on seed density, although the dominant effect 

was parasitic with a decline in cushion seed production with increasing cover of beneficiaries. 

 We showed in our study that phenotypic differences in cushion traits within the 

foundation cushion grass species, F. gautieri, had both heritable and environmental bases. We 

also showed that these trait divergences induce contrasting competitive effects for other 

species that counterbalanced the strong increase in competition, which has been recurrently 

shown to exist from dry to mesic subalpine habitats. Thus, heritable and plastic effects 

strongly contribute to maintain high subordinate community diversity through decreasing 

competition. The high diversity of other species within cushions had feedback effects on the 

fitness of the loose cushion. Further experiments are needed to also eventually detect a benefit 

for loose cushions to hosting other species in order to test the hypothesis that these contrasting 

competitive effects have evolutionary consequences for the foundation grass species. Our 

study brought additional sup- port to the emerging perspective that diffuse within-trophic 

level biotic interactions might have important evolutionary consequences at the community 

level. 
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Fig. S1 Summary of our experimental design with the different field and shadehouse surveys or experiments realised in order to answer to our three main 

questions
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Fig. S2 Leaf pungency frequency distribution of F. gautieri cushions measured in ten 10-meter long 

transects; the leaf pungency index varies between 0 (not pungent) and 5 (highly pungent) with 0-1 

values for loose F. gautieri phenotypes, 2-3 for intermediate phenotypes, and 4-5 for tight phenotypes  
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Figure S3 Relationship between the number of inflorescences of F. gautieri and a) the number of 

individuals of hosted species, b) the number of hosted species. The number of inflorescences is 

expressed per cm2 of cushion area and the number of individuals and of species per sampling area (i.e., 

314 cm2) 
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Summary 

• Differences in effects between phenotypes of foundation species on dependent species 

have been reported, but no study has separated their genetic and plastic components. In a 

subalpine community of the French Pyrenees, we observed two phenotypes of Festuca 

gautieri: tight cushions in dry convex outcrops with few subordinate species, and loose 

cushions in wet concave slopes with many subordinate species, suggesting differences in 

effects of the two phenotypes on subordinates.  

• We studied in two common-gardens with adult cushion reciprocal transplantations the 

responses of the two phenotypes to changes in environmental conditions, thus assessing the 

contribution of genetics and plasticity to the phenotypic variation. We also assessed the 

plasticity and genetic bases of their contrasting effects with a target cross-transplantation 

experiment, and quantifying the recolonisation of resident plants within the reciprocally 

transplanted cushions. 

•  We found that morphological differences between cushions had both genetic and plasticity 

bases. The two competition experiments showed genetic-based increase in competitive effects 

from loose to tight cushions. This was counteracted by plasticity effects, which decreased 

competition from the benign to the stressful garden.  

• We conclude that genetic effects overcome plasticity effects resulting in higher diversity in 

the loose phenotype from the benign habitats.  

 

Key words: common-garden, competitive effect, Festuca gautieri (Bearskin fescue), 

foundation species, genetics, phenotypes, plasticity, reciprocal transplantation  
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Introduction 

Since the call for a new field inquiry bridging the gap between community ecology and 

evolutionary biology in a way “to emphasize the analyses of evolutionary genetic processes 

that occur among interacting populations in communities” (Antonovics, 1992; see also 

Wilson, 1976), research in community genetics provided evidence that genetic variation 

within one species, particularly a foundation (Ellison et al., 2005), may have cascading effects 

at the community and ecosystem levels through biotic interactions (Antonovics, 1992; 

Whitham et al., 2003, 2006, 2008; Pakeman et al., 2006; Johnson & Stinchcombe, 2007; 

Gibson et al., 2012; Bailey et al., 2014). As primary producers, plants are the primary 

resource in most terrestrial food webs (Chapin & Eviner, 2012); thus they are potentially 

perfect organisms for assessing the consequences of a genetic or phenotypic variation within a 

focal species on its community. Yet, studies of interactions within plant communities (i.e. 

plant-plant interactions) have been minimally explored in an evolutionary context (Lankau & 

Straus, 2007; Michalet et al., 2011; Gibson et al., 2012) compared to interactions across 

trophic levels such as species-specific mutualistic or parasitic interactions (Bailey et al., 2009; 

Bronstein, 2009; Adams et al., 2011; Crutsinger et al., 2014) probably because their 

evolutionary consequences are hindered by the diffuse nature of plant-plant interactions.  

 Steep slopes and topographically complex landscapes in mountainous regions, such as 

the alpine and subalpine systems, are known to generate heterogeneous (micro)-

environmental conditions and habitat variation over short-scale distances. Plant-plant 

interactions have been widely studied in alpine and subalpine systems and are known to 

strongly vary across these contrasting environments, with competition dominating in the 

subalpine and in concave topographies on deep soils and facilitation in alpine and convex 

topographies on shallow soils (Choler et al., 2001; Callaway et al., 2002; Cavieres & Badano, 

2009; Michalet et al., 2014), consistent to the Stress Gradient Hypothesis (hereafter SGH, 

Bertness & Callaway, 1994; Brooker & Callaghan, 1998). Facilitation has also been shown to 

contribute to the diversity of alpine systems (Cavieres et al., 2014), consistent to ecological 

theory (Michalet et al., 2006). Alpine systems are also particularly suitable for exploring 

ecologically differentiated plant species over a small-scale environmental variation induced 

by the relatively rugged topography (Choler et al., 2004; Liancourt et al., 2013) as 

topographic heterogeneity may induce sympatric genetic differentiation within species 

(Sambatti & Rice, 2006; Lekberg et al., 2012). 

Phenotypic differentiation within a plant species may have contrasting effects on 

dependent species, due to their varying traits (Lankau & Strauss, 2007; Crutsinger et al., 

2010; Michalet et al., 2011; Liancourt et al., 2013). Most cases of changes in effects of 
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differing phenotypes on dependent species have been evidenced in studies where the different 

phenotypes occur in similar environmental conditions (Callaway et al., 1991; Crutsinger et 

al., 2010). For example, Callaway et al. (1991) showed in Californian oak savannah that two 

phenotypes of Quercus douglasii differing in surface root density induce contrasting 

interference effects on their herbaceous understories. Similarly, Crutsinger et al. (2010) 

showed contrasting facilitative and competitive effects of erect and prostrate phenotypes of 

Baccharis pilularis, respectively, under constant environmental conditions in coastal 

Californian dunes. Though, most phenotypic differentiation has been shown to occur across 

environmentally contrasting conditions, particularly across topography and/or soil gradients 

(Choler & Michalet, 2002; Michalet et al., 2011; Lekberg et al., 2012; Liancourt et al., 2013). 

Intraspecific morphological trait variation in heterogeneous environments can be explained by 

genetic variability and/or phenotypic plasticity (Pigliucci, 2001; Byars et al., 2007; Grassein 

et al., 2010). Reciprocal transplant experiments (Joshi et al., 2001; Kawecki & Ebert, 2004; 

Ågren & Schemske, 2012; Bennington et al., 2012) help revealing local adaptation, and thus 

the heritability of trait differences, even over short range of environmental variation and 

despite the occurrence of gene flow (Byars et al., 2007; Gonzalo-Turpin & Hazard, 2009). 

However, differentiating with cross-transplantation competitive experiments the contribution 

of genetic and plasticity in driving differences in phenotypic effects across contrasting 

environmental conditions is not an easy task in natural alpine systems. In such hard physical 

conditions most nurse species have too low growth-rate to attain a sufficient size for assessing 

their effects on other species (Liancourt et al., 2009). For example, Michalet et al. (2011) 

found contrasting phenotypic effects of the alpine foundation species Geum rossii on other 

species in a field experiment conducted across natural habitats in northern Arizona. They also 

evidenced the genetic basis of phenotypic traits differences in a common-garden. However, 

they could not straightforwardly conclude on the genetic basis of changes in effects on other 

species across habitats because they could not separate the confounding effects of varying 

environmental conditions (i.e. plasticity effects) in a cross-transplantation competitive 

experiment with this slow-growing species.  

In a subalpine system of the French Pyrenees, Al Hayek et al. (2014) observed two 

different phenotypes of Festuca L. gautieri (Hack.) K. Richt. with contrasting patterns of 

association with dependent species in two microtopographic conditions: a ‘tight’ phenotype 

with stiff leaves in dry outcrops with few if any other species within its canopy, and a ‘loose’ 

phenotype with soft leaves in wet concave slopes hosting many other species. In a low 

elevation shadehouse experiment, they showed both the heritability of trait differentiation and 

the stronger competitive effect of the tight phenotype as compared to the loose phenotype. 

However, in a field experiment in the same subalpine system, they found an opposite result 
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with a slightly higher competition in the habitat of the loose phenotype than in the habitat of 

the tight phenotype. They concluded that genetic effects counteracted the increase in 

competition from the stressful convex habitat to the more productive one predicted by 

ecological theory (Grime, 1973; Bertness & Callaway, 1994) and evidenced by several 

authors in subalpine and alpine systems (Choler et al., 2001; Cavieres & Badano, 2009; 

Callaway et al., 2002; Michalet et al., 2014). They argued that genetic effects contribute to 

maintain diversity in this subalpine system through decreasing competition in the predicted 

highly competitive and species-poor concave habitat. However, Michalet et al. (2014) have 

shown for alpine and subalpine communities that an increase in competition from a stressful 

habitat to a more benign one might be due to either an increase in the target performance 

growing without neighbours (defined as strict environmental severity effect) or an increase in 

the target performance growing within neighbours (i.e. neighbour trait effect), and thus 

eventually to the plasticity of competitive effects in absence of interspecific turnover of nurse 

species. Al Hayek et al. (2014) could not separate these two effects in their study because 

they did not quantify the plasticity of the competitive effects (changes in effects of a single 

genotype on dependent species along an environmental gradient). Moreover, the genetic basis 

of the differences in phenotypic traits and facilitative/competitive effects was not assessed in 

the natural environment of the cushions but in a low-elevation shadehouse (with no physical 

stress), which is particularly problematic for assessing facilitation known to occur in stressful 

conditions (Bertness & Callaway, 1994). 

 Thus, in this study conducted in the same system formerly explored by Al Hayek et al. 

(2014) we separated the relative contribution of genetic differentiation and phenotypic 

plasticity to changes in phenotypic traits and competitive/facilitative effects across habitats, 

using two subalpine common-gardens mimicking the natural habitats of the two phenotypes 

of F. gautieri. Our approach is novel as intraspecific variation in foundation species effects on 

dependent species has been minimally explored through reciprocal transplant experiments. 

First, we transplanted adult cushions of the two phenotypes in both gardens and measured 

their morphological traits to assess the genetic and plasticity bases of changes in phenotypic 

traits between phenotypes across natural habitats. We, then, transplanted three target species 

(Agrostis capillaris L., tight F. gautieri and loose F. gautieri) within the reciprocally 

transplanted cushions and outside cushions (open area) to assess the genetic and plasticity 

bases of their differences in competitive and facilitative effects across natural habitats. 

Additionally, as our ultimate goal was to assess the ecological consequences of phenotypic 

differentiation for the diversity of this subalpine system, we counted the number of naturally 

re-established subordinate species (species richness) in all cushions and open areas between 
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cushions in both gardens. This latter survey should allow us to assess the relevance of our 

target competition experiment for community richness. 

 

Materials and Methods 

Study site and target species 

The experimental site is located in the western Pyrenees, 100 km from the Atlantic Ocean at 

La Pierre Saint-Martin pass (42°58′N, 0°45′W, altitude: 1744 m a.s.l., Pyrénées-Atlantiques, 

France). Climate is temperate oceanic with a mean winter temperature of -2.2°C and a mean 

summer temperature of 11.5°C; mean annual precipitation is 2850 mm with the highest 

rainfall occurring in winter. Our target species, Festuca L. gautieri (Hack.) K. Richt., is a 

dwarf grass with a circular to elliptic cushion-like form with thin bright green leaves and 

yellowish-green inflorescences flowering from July to August. It is a foundation species 

typical of subalpine and alpine grasslands on rocky calcareous soils in the entire Pyrenees 

(Saule, 1991). Two contrasting phenotypes of F. gautieri cushions occur in the system across 

contrasting topographic and soil conditions (Le Bagousse-Pinguet et al., 2014; Al Hayek et 

al., 2014). A tight phenotype dominates convex topographic habitats with shallow, stony and 

relatively dry soils, and a loose phenotype dominates concave topographic habitats with deep, 

less stony and relatively wet soils (Al Hayek et al., 2014). Tight phenotypes have been shown 

to be more drought-tolerant than loose ones (Le Bagousse-Pinguet et al., 2014). Both 

phenotypes may occur side-by-side, as the scale of habitat heterogeneity is less than one 

meter. Moreover, cushions with intermediate traits occur in intermediate ecological 

conditions, but they are much less frequent than the two extreme phenotypes (Al Hayek et al., 

2014). Inflorescences cover is high for tight phenotypes, intermediate for intermediate 

phenotypes and low for loose phenotypes (Al Hayek et al., 2014). Loose phenotypes have a 

higher subordinate species richness and abundance than intermediate or tight phenotypes [n = 

30, one-way Analysis Of Variance (ANOVA): P < 0.001, Fig. 1 and Supporting information 

Table S1]. Most frequent species of the community are Agrostis capillaris L., Galium 

pumilum Murray, Campanula rotundifolia L., Alchemilla conjuncta Bab., Lotus corniculatus 

L., Festuca rubra L. and Trifolium pratense L. 
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Fig. 1 Means + SE (n = 30) of species richness (a) and abundance (b) of subordinate plant species 

within tight, intermediate and loose cushions of Festuca gautieri in their natural habitats. Significant 

results of one-way ANOVAs on the effect of Phenotype are indicated: ***, P < 0.001. Results of 

Tukey tests for significant Phenotype effect are shown on top of error bars. 

 

 

Reciprocal cushion transplant experiment  

In order to assess the heritability and plasticity of cushion traits in natural conditions, we set 

up a reciprocal transplant experiment in two experimental gardens mimicking the 

environmental conditions of the natural habitats of the two phenotypes. On November 2010, 

we collected eight F. gautieri cushions (hereafter genotypes) of each phenotype, tight and 

loose, at our site. We chose distant, adult and discrete cushion individuals in order to 

maximise chances of selecting genetically different cushions. Each cushion was separated into 

ten tillers of 5-10 leaves which were grown for 32 months in a greenhouse [see Al Hayek et 

al. (2014) for detailed methodology]. Early July 2013, when the cushions had attained an 

adult size (approximately 20 cm in diameter) we transplanted them in the two experimental 

gardens at our site. The first garden (convex garden hereafter) was set up in a convex 

topographic position on shallow, stony and relatively dry soil [soil volumetric water content 

measured with a ML3X ThetaPorbe (Delta-T Devices, Cambridge, UK) 3 days after a rain 

event, 7.13 ± 1.57, n = 25] mimicking the tight cushion’s natural microhabitat. The second 

garden (concave garden hereafter) was set up in a concave topographic position on deep, less 

stony and relatively wet soil (soil volumetric water content, 30.43 ± 0.85, n = 25) mimicking 

the loose cushion’s natural microhabitat. The two gardens were 50 m apart, with a surface of 

46 m2 each. In each garden, we transplanted five adult cushions of each genotype of each 

phenotype (Phenotype treatment; total cushions per garden: n = 80). The 80 cushions were 

randomly transplanted, 50 cm distant from each other and tagged with metal rings. All 

cushions were watered once after transplantation. Before planting out, resident vegetation was 

manually eliminated, and a mulching canvas, permeable to water and air, was spread out to 

inhibit the regeneration of resident vegetation. New recruits or regrowth of resident vegetation 
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was removed again in September 2013 after the growing season. Circular holes of 30 cm in 

diameter were made in the mulching canvas in order to transplant the cushions, and two 

paired holes were made in open areas near each cushion. One of the paired open areas was 

used in the competition experiments; the other one was used to assess the effects of cushions 

on the natural re-establishment of subordinate species. The gardens were fenced with metallic 

nets (height: 1 m – mesh: 10 cm x 10 cm) to prevent herbivory. 

 In July 2014, we measured cushion surface, maximum leaf length, cushion penetration 

(an index of cushion compactness and interference, Al Hayek et al., 2014), leaf thickness and 

leaf density (five morphological traits) on both tight and loose cushions (Phenotype treatment) 

in both gardens. All morphological traits were averaged per cushion genotype in each 

treatment combination (Garden x Phenotype for morphological traits, and Garden x 

Neighbour for naturally re-established species richness and abundance).  

 

Reciprocal transplant competition experiment 

In order to assess the relative contribution of the genetic and plastic components to the 

variation in competitive and facilitative abilities (effect and response) among F. gautieri 

phenotypes, we set up a reciprocal transplant competition experiment in the same gardens in 

July 2013. We manipulated cushion presence and phenotype (Neighbour treatment), 

microhabitat (Garden treatment) and target identity (Target treatment). The Neighbour 

treatment was applied by planting targets either within a tight or a loose cushion, or alone 

without cushion (open area). For the Target treatment, in order to cover a representative panel 

of possible responses to neighbouring cushions (Brooker et al., 2008), we used two drought-

intolerant target species, i.e. the loose F. gautieri phenotype itself and A. capillaris (the most 

frequent subordinate species), and a drought-tolerant target, the tight F. gautieri phenotype 

itself. We used both F. gautieri phenotypes as targets in order to assess not only their effects 

but also their responses to neighbours, as both effect and response are important components 

in determining a species competitive and facilitative abilities (Goldberg, 1990; Liancourt et 

al., 2009; Le Bagousse-Pinguet et al., 2013). We planted the three target individuals (one 

tight and one loose F. gautieri, and one A. capillaris) within each cushion’s canopy with an 

equal distance of 10 cm between them, and in the paired open area near the cushion (in the 

holes previously made in the mulching canvas). As transplanted targets remained very small 

during the whole experiment, this distance was sufficient to avoid any interaction between 

target individuals within a single cushion. We used five different genotypes per target with 

eight replicates per genotype. A replicate of target genotype was planted in each cushion 

genotype. This genotypic sampling was applied in order to maximize differences in 

competitive ability within phenotypes, but was not used as a statistical treatment due to 
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insufficient replication. Transplanted targets were randomly collected at the site in five distant 

and discrete cushions for each F. gautieri phenotype and in five distant and discrete patches 

for A. capillaris. Targets had from 5 to10 leaves. All targets were tagged with metal rings. 

Beginning of August 2013, dead targets were replaced. 

 In September 2013 (after summer season) we recorded survival and total leaf number 

for each target. We also recorded survival in June 2014 but did not measure growth (total leaf 

number) since there was very low survival in some treatments. Survival was expressed in 

percentages (0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5 or 100%) calculated for all targets 

(regardless their genotype) transplanted within the same cushion genotype, then averaged per 

treatment combination (Garden-Neighbour-Target) before statistical analyses. Total leaf 

number measurements were also averaged per cushion genotype in each treatment 

combination. 

 

Survey of naturally re-established plant species 

In July 2014 we recorded the number of naturally re-established plant species (richness) and 

their abundance within all the cushions and in 40 randomly selected paired open areas 

(Neighbour treatment) in both gardens (Garden treatment), using quadrats of 20 x 20 cm, in 

order to quantify their responses to the effects of both cushion phenotypes. These naturally re-

established plant species (resident vegetation) were lastly eliminated at the beginning of 

autumn 2013 (to limit competition with our transplanted subordinate species and cushions). 

Species richness and abundance were expressed per 400 cm2 (mean cushion size) due to 

differences in cushion surfaces and then averaged per cushion genotype in each treatment 

combination (Garden-Neighbour) before statistical analyses. 

 

Calculation of biotic interaction index 

We quantified the net effect of cushion phenotypes on transplanted targets and on naturally 

re-established resident species in each treatment combination using the Relative Interaction 

Index (RII, Armas et al., 2004) for target survival (RIIsurvival) and total leaf number (RIItotal leaf 

number) for the transplanted targets, and RII for species richness (RIIRichness) and abundance 

(RIIAbundance) for the naturally re-established species with:  

RII = (P+neighbour – P-neighbour) / (P+neighbour + P-neighbour) 

where P+neighbour and P-neighbour represent target species performances (survival and total leaf 

number) in the presence and absence of a neighbouring cushion, respectively. This index is 

symmetrical around zero (no significant interaction) and has defined limits between -1 and 

+1. Negative values indicate competition whereas positive values reflect facilitation. 
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Data analysis 

Differences in cushion traits (cushion surface, maximum leaf length, cushion penetration, leaf 

thickness and leaf density) were analysed using a two-way ANOVA (followed by Tukey tests 

when necessary) with Garden and Phenotype as treatments. For the reciprocal transplant 

competition experiment, we conducted separate analyses per target species for survival and 

growth data, and one analysis grouping target species for RII data. Differences in survival and 

total leaf number of transplanted targets were analysed using a two-way ANOVA model 

(followed by Tukey tests when necessary) with Neighbour and Garden as treatments and 

survival and total leaf number as response variables. Differences in cushions net effects on 

target survival and growth were analysed using a three-way ANOVA model with Garden, 

Phenotype and Target as treatments, and RIIsurvival and RIItotal leaf number as response variables. 

Differences in re-established plant species richness and abundance were analysed using a two-

way ANOVA (followed by Tukey tests when necessary) with Garden and Neighbour as 

treatments, and species richness and abundance as response variables. Richness and 

abundance data were treated with ANOVA models instead of Generalised Linear Models 

(GLM), as they were not discrete but continuous, resulting from averaging per cushion 

genotype in each treatment combination (see above). Differences in cushions net effects on 

re-established plant species richness and abundance were analysed using a two-way ANOVA 

model with Garden and Phenotype as treatments, and RIIRichness and RIIAbundance as response 

variables. One sample t-tests were used to analyse significant deviation of RII values from 

zero, which represents no cushion effect. 

 All dependent variables were checked for normality and log- (cushion traits, target 

growth, and re-established plant species richness and abundance) or arcsineroot-transformed 

(target survival) before parametric tests. All statistical analyses were done using R (R 

Development Core Team, 2013). 

 

Results  

Reciprocal cushion transplant experiment 

After one growing season, F. gautieri cushion traits were significantly affected by both the 

Phenotype and Garden treatments (Fig. 2 and Table S2). Cushions were 100% bigger in the 

concave than convex garden (Garden effect: P < 0.001). However, the increase in cushion 

surface from the convex to the concave garden was higher for loose than tight cushions, and 

thus, tight cushions were 10% larger than loose cushions in the convex garden but 15% 

smaller in the concave garden (G x P effect: P < 0.05, Fig. 2a). Cushion leaves were 40% 

longer in the concave than convex garden (Garden effect on maximum leaf length: P < 0.001) 

and 17% longer for loose than tight cushions (Phenotype effect: P < 0.01, Fig.2b). Cushions 
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penetration was 40% higher in the concave than convex garden (Garden effect: P < 0.001), 

and 25% higher for loose cushions than for tight cushions (Phenotype effect: P < 0.001, Fig. 

2c). Leaves were 5% thicker in the convex than concave garden (Garden effect: P < 0.05) and 

15% thicker for tight than loose cushions (Phenotype effect: P < 0.001, Fig. 2d). Cushions 

had overall a higher leaf density in the convex than concave garden (Garden effect: P < 

0.001), but this effect differed among phenotypes (G x P effect: P < 0.001, Fig. 2e): tight 

cushion had 15% more leaves per unit area than loose cushions in the convex garden but a 

converse effect was observed in the concave garden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Means + SE (n = 8) of cushion surface (a), maximum leaf length (b), cushion penetration (c), 

leaf thickness (d) and leaf density (e) of tight and loose Festuca gautieri cushion phenotypes in the 

convex and concave gardens. Significant results of two-way ANOVAs on the effects of Garden (G), 

Phenotype (P) and their interaction are indicated: *, P < 0.05, **, P < 0.01, ***, P < 0.001. 

 

 

Reciprocal transplant competition experiment 

In September 2013, after summer season, there was a high survival for A. capillaris, which 

was affected by neither the Garden and Neighbour treatments nor their interaction (Fig. S1a 

and Table S3). In contrast the two other target species had a much lower survival, in particular 

in the open of the convex garden (significant G x N interactions, Fig. S1b,c). Thus, RII results 

showed an overall switch from facilitation in the convex garden to competition in the concave 
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garden (Garden effect: P < 0.001, Fig. S2, also see Table S4), and in particular for the two 

fescue targets (significant G x T interaction, P < 0.05). In contrast, differences in effects of 

the two phenotypes were marginally significant at this first date (Phenotype effect: P < 0.1). 

In June 2014, one year after the beginning of the experiment, survival of A. capillaris was 

significantly higher without neighbours than within tight or loose cushions (Neighbour effect: 

P < 0.001, Fig. S3a, also see Table S5), whereas survival of the tight fescue target was 

significantly higher without neighbour and within loose cushions than within tight cushions 

[Neighbour effect: P < 0.01, Tukey results: open area (a), tight F. gautieri cushion (b), loose 

F. gautieri cushion (a), Fig. S3b]. For the loose fescue target, survival was higher in the 

convex rather than the concave garden (Garden effect: P < 0.05, Fig. S3c). Thus, RII results 

showed that competition for survival was stronger in the concave than the convex garden 

(Garden effect: P < 0.01, Fig. 3 and Table S6) but the most significant effect was the 

Phenotype effect, with an overall increase in RII from tight to loose cushions (Phenotype 

effect: P < 0.001, Fig. 3). There were also significant differences in competitive responses for 

survival between targets [Target effect: P < 0.001, Tukey results: A. capillaris (ab), tight F. 

gautieri target (b), loose F. gautieri target (a)] as the loose fescue target was the strongest 

response competitor and the tight fescue target the weakest. We also found a significant 

Garden x Phenotype x Target interaction (G x P x T, P < 0.05) due to a strong shift from 

positive to negative RII from the convex to the concave garden, only observed for the tight 

fescue target within the loose cushions (Fig. 3). This latter result shows the stronger plasticity 

of the effect of the loose cushion as compared to the tight one, as well as the lower 

competitive response of the tight fescue target as compared to the two other target species. 

For growth, in September 2013, there was a highly significant Neighbour effect for A. 

capillaris as there were more leaves without than within both cushion types (Neighbour 

effect: P < 0.001, Fig. S4a, also see Table S7), in particular in the concave garden (significant 

G x N interaction: P < 0.05). We also found a significant G x N interaction for the loose 

fescue target (P < 0.05, Fig. S4c) as there were more leaves in the open area and the loose F. 

gautieri cushions than within tight cushions in the concave garden but no differences in the 

convex garden (see Tukey results in Fig. S4c). In contrast, there was no significant effect of 

any treatment for the tight F. gautieri (Fig. S4b). RII total leaf number results showed 

significant differences in targets competitive response, with A. capillaris being the weakest 

response competitor [Target effect: P < 0.001, Tukey results: A. capillaris (b), tight F. 

gautieri (a), loose F. gautieri (a), Fig. 4, also see Table S8]. There was an increase in 

competition, or a decrease in facilitation, from the convex to the concave garden (Garden 

effect: P < 0.05) and no Phenotype effect at this date. We also found a significant G x T 

interaction (P < 0.05) because there was a decrease in RII from the convex to the concave 
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garden for both A. capillaris and the loose F. gautieri targets but not change for the tight F. 

gautieri target. Specifically, the loose fescue target was facilitated only in the convex garden 

and competition increased for A. capillaris in the concave garden (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Means ± SE (n = 8) of RIIsurvival (June 2014) of the three targets (Agrostis capillaris, the tight 

Festuca gautieri and the loose Festuca gautieri) calculated for both cushion phenotypes in convex and 

concave gardens. Significant results of the three-way ANOVA on the effects of the Garden (G), 

Phenotype (P), Target (T) treatments and their interactions are indicated. Tukey tests are shown on top 

of error bars when a significant Garden x Phenotype x Target (G x P x T) interaction is shown. Also, 

results of one sample t-tests are shown above error bars: (*), P < 0.1; *, P < 0.05; **, P < 0.01; ***, P 

< 0.001. 

 

 

 

 

 

 

 

 

 
Fig. 4 Means ± SE (n = 8) of RIItotal leaf number of the three targets (Agrostis capillaris, the tight Festuca 

gautieri and the loose Festuca gautieri) calculated for both cushion phenotypes in the convex and 

concave gardens. Significant results of the three-way ANOVA on the effects of the Garden (G), 

Phenotype (P), Target (T) treatments and their interactions are indicated, and results of one sample t-

tests are shown above error bars: (*), P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Re-establishment of subordinate species    

The natural re-establishment of subordinate species within tight and loose cushions (in both 

gardens) was significantly affected by the Garden and Phenotype treatments (Fig. 5 and Table 
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S9). For species richness there was a significant Garden effect (P < 0.001, Fig. 5a) with a 

higher richness in the convex than concave garden. Additionally, RII results showed that 

competition for species richness was significantly higher in the concave than convex garden 

(Garden effect: P < 0.001, Fig. 5c), but there was a tendency for this effect to be stronger for 

the tight than loose phenotype (marginally significant G x P interaction and highly significant 

competition within the tight phenotype in the concave garden, see result of the sample t-tests 

in Fig. 5c). For abundance, there was a significant Neighbour effect (P < 0.05, Fig. 5b), as 

individuals re-established more within loose than tight cushions with intermediate values in 

the open [Tukey results for the neighbour effect: open area (ab), tight F. gautieri (b) and loose 

F. gautieri (a)]. Thus, there was a significant Phenotype effect on RIIAbundance (P < 0.01, Fig. 

5d) with tight cushions being highly competitive and loose ones neutral or weakly facilitative. 

Additionally there was a significant Garden effect  (P < 0.05) as RIIAbundance became less 

negative for the tight cushion and shifted from negative to positive for the loose cushion from 

the convex to the concave garden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Upper panels: means + SE (n = 8) of species richness (a) and abundance (b) of naturally re-

established plant species in open areas and within tight and loose cushions of Festuca gautieri in the 

convex and concave gardens. Significant results of the two-way ANOVAs on the effects of the 

Garden, Neighbour treatments and their interaction are indicated: *, P < 0.01; ***, P < 0.001. Lower 

panels: mean ± SE (n = 8) of RIIRichness (c) and RIIAbundance (d) of naturally re-established plant species 

for the two Festuca gautieri cushion phenotypes in convex and concave gardens. Significant results of 

the two-way ANOVAs on the effects of the Garden (G), Phenotype (P) treatments and their interaction 

are indicated, and significant results of one sample t-tests on RII values are shown above (or below) 

error bars: (*), P < 0.1; **, P < 0.01; ***, P < 0.001. 
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Discussion  

We aimed to assess the genetic and plasticity bases of the differences in morphological traits 

of the two phenotypes of F. gautieri and of their effects on subordinate species. Our results 

indicated that both genetics and plasticity account for differences in phenotypic traits and in 

effects on subordinate species. However, both results from our transplant competition 

experiments and survey of naturally re-established subordinate species showed that genetic 

and plastic effects act in opposite directions with increasing stress. Genetic effects are in line 

with an increase in competition with increasing stress, whereas plastic effects are in line with 

a decrease in competition with increasing stress. 

 Our reciprocal cushion transplant experiment indicated considerable variation in 

morphological traits between the tight and loose F. gautieri phenotypes. Tight cushions were 

more compact (lower penetration) with shorter and thicker leaves than loose ones. The pattern 

was consistent across topographical position (Garden treatment) four years after field 

collection suggesting that a genetic component for the intraspecific morphological differences 

observed across natural habitats very likely exists. This is consistent with the experiment of 

Al Hayek et al. (2014) who found that differences in morphological traits between transplants 

of both F. gautieri phenotypes were maintained two years after being grown under the same 

environmental conditions. Other authors have shown genetic-based morphological variations 

within plant species [e.g. Rowland (2001) between four populations of Populus deltoides, 

Crutsinger et al. (2010) for erect and prostrate Baccharis pilularis phenotypes, Michalet et al. 

(2011) for tight and loose Geum rossii phenotypes]. Moreover, tight and loose cushions 

differed significantly in their optimal environmental conditions for two growth traits, surface 

and leaf density. We found higher performance for these traits for tight than loose cushions in 

the convex garden (high stress) and vice versa in the concave garden (low stress). This 

suggests a phenotypic specialisation and thus an adaptation of tight cushions to high stress 

habitat, and loose cushions to low stress habitat, consistent to their natural distribution. The 

higher increase in cushion surface from the convex to the concave garden observed for loose 

cushions than for tight ones also shows the higher plasticity of the former. This highlights the 

occurrence of differences in functional strategies among phenotypes, the loose phenotype 

being more exploitative with long and thin leaves and the tight one more conservative with 

short and thick leaves (Grime, 1974; Tilman, 1982; Liancourt et al., 2005), consistent with the 

results of Michalet et al. (2011) for the alpine cushion species Geum rossii. On the other 

hand, varying environmental conditions across gardens had a significant effect on all 

morphological traits, with cushions in the concave garden having longer leaves, larger surface 

and higher penetration, and cushions in the convex garden having ticker leaves and higher leaf 
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density. Thus, variation in morphological traits across natural habitats is also in part due to 

plasticity effects. To summarise, both genetic and plastic effects explained the morphological 

trait differences between F. gautieri phenotypes. This is in accordance with other studies that 

showed the implication of both genetic and plastic effects in determining morphological traits 

(Bresson et al., 2010; Michalet et al., 2011). 

 Results of our competition experiment also showed that both genetic and plastic 

effects account for differences in competitive and facilitative abilities between F. gautieri 

phenotypes. The Stress-Gradient-Hypothesis predicts that competition should shift to 

facilitation when increasing stress (Bertness & Callaway, 1994; Brooker & Callaghan, 1998), 

as demonstrated by several experimental studies (Choler et al., 2001; Callaway et al., 2002; 

Schiffers & Tielbörger, 2006; but see Maestre & Cortina, 2004). Consistently, cushion 

competitive effects decreased from the concave to the convex garden for both target survival 

and leaf number. For survival the phenotype effect was even stronger than the garden effect, 

and increased through time with only a marginally significant effect in September 2013 but a 

highly significant effect at the end of the experiment in July 2014. For growth there was no 

significant phenotype effect, likely because measurements could only be analysed in 

September 2013 due to the too low target survival at the end of the experiment. These results 

suggest that differences in effects on dependent species across phenotypes have established 

through time; as the cushions grew (most cushions almost doubled in size between the two 

dates, particularly the loose phenotype, P. Al Hayek, pers. obs.), their effects were settled and 

tight cushions became significantly more competitive than loose ones in both gardens in July 

2014. This asserts our prediction of higher competitive effects for tight than loose F. gautieri 

phenotypes, and proves the heritability of these effects. Tight cushions had higher competitive 

effects than loose ones, probably due to lower penetration (related to higher leaf thickness, 

stiffness and leaf density in the convex garden) inhibiting target species within the cushion’s 

canopy. Contrasted effects of different phenotypes of foundation species on subordinate 

species, have been evidenced in several studies (Callaway et al., 1991; Pugnaire et al., 1996; 

Rudgers & Maron, 2003; Crutsinger et al., 2010; Michalet et al., 2011; Cranston et al., 2012; 

Schöb et al., 2013; Al Hayek et al., 2014). Our results are consistent with Michalet et al. 

(2011) who showed, contrasting competitive and facilitative effects of genetic-based tight and 

loose phenotypes of Geum rossii, respectively. Similar results were found by Crutsinger et al. 

(2010) in a common garden experiment for the coastal dune shrub Baccharis pilularis, with 

contrasting competitive and facilitative effects of erect and prostrate phenotypes, respectively. 
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However, the genetic-based increase in competition from loose to tight cushions 

shows that genetic effects are in line with an increase in competition with increasing stress 

and thus, in contrast to plasticity effects, contradicts Grime’s (1974) model and the SGH 

(Bertness & Callaway, 1994). In contrast, this is consistent with other theoretical models 

proposing either the occurrence of high competition in nutrient-poor soils (Tilman, 1982) or 

even an increase in competition with decreasing resource availability (MacArthur & Wilson, 

1967; Taylor et al., 1990). This alternative prediction has been supported by several 

experiments, in particular in dry environments (Davis et al., 1998; Tielbörger & Kadmon, 

2000; Maestre & Cortina, 2004; Saccone et al., 2009). 

 We also found a difference in plasticity of cushion effects (i.e. changes in cushion 

effects across gardens) between tight and loose phenotypes. For survival, there was a shift 

from facilitation to competition within loose cushions from the convex (high stress) to the 

concave (low stress) garden for the tight fescue target, while no such effect was observed in 

tight cushions for any target species (Fig. 3). The stronger plasticity of loose cushions effects, 

as compared to tight ones, is consistent with their higher growth rate and lower stress-

tolerance shown by our traits measurements, the results of Le Bagousse-Pinguet et al. (2014) 

and their contrasting natural distributions along environmental gradients. Thus, the loose 

cushion with its exploitative strategy, higher plasticity and higher competitive ability in 

conditions of low stress (concave topography) is more representative of the Grime’s (1974) 

competitor, whereas the tight cushion with its conservative strategy and higher competitive 

ability in stressful conditions is more representative of the Tilman’s (1982) nutrient 

competitor or the K-strategy of MacArthur & Wilson (1967). Similar differences in functional 

strategy were described by Michalet et al. (2011) for the two phenotypes of the alpine plant 

Geum rossii.  

 Our assessment of richness and abundance of naturally re-established subordinate 

species brought additional evidence that differences in competitive and facilitative effects 

among F. gautieri phenotypes have both genetic and plasticity bases. As in the transplant 

competition experiment, we found a genetically-driven increase in competition from the loose 

to the tight phenotype for both richness and abundance. Plasticity effects were also consistent 

with those of the transplant competition experiment for richness, with an increase in 

competition from the dry to the wet garden. Thus, our results overall confirm those of the 

transplant competition experiment, and thus, ensure their relevance for understanding 

interactions occurring in natural habitats. However, there were interesting differences between 
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the patterns of resident species re-establishment and the richness and abundance of dependent 

species within the two natural habitats. 

 For the loose phenotype, the number of the re-established subordinate species 

(richness) in the concave garden was twice as high as the number of subordinate species 

occurring in loose cushions in their natural habitat, and their abundance was similar (see Figs 

1 and 5a,b). In contrast, for the tight phenotype, both the re-established subordinate species 

richness and abundance were much higher in the convex garden than in the natural habitat 

(ten times higher for richness and four times for abundance, see Figs 1 and 5a,b). This 

suggests that the effects of the loose cushions are almost completely established and similarly 

expressed as in their natural habitat, whereas the effects of the tight cushions are far from 

being established, and, thus, not identically expressed as in their natural habitat. Several 

studies comparing the short-term effect of an experimental treatment to a similar change in 

the same factor across natural gradients have observed such discrepancy, in particular for 

functional traits. For example, Sandel et al. (2010) have shown that increasing water 

availability in experimental conditions in the American prairie induces a decrease in seed size 

and an increase in leaf nitrogen content, whereas converse patterns are observed along natural 

gradient of water availability in the same system. They argued that the short-term effects 

observed in experimental conditions were due to the response of fast-growing ruderals, likely 

to be replaced by more conservative species through time. Similarly, we argue that the lower 

growth rate of the conservative tight phenotype as compared to the exploitative loose one may 

explain why the competitive effects of the former were not completely established in the 

convex garden, in contrast to the latter in the concave garden, thanks to its higher plasticity. 

Additionally, K-strategy species such as the tight phenotypes are known to acquire their 

competitive ability through time, in contrast to exploitative species such as the Grime’s 

competitor, which wins competition thanks to their higher plasticity (Liancourt et al., 2009).  

 To conclude, our results showed that both genetics and plasticity play a role in the 

variation of the competitive effects between tight and loose F. gautieri phenotypes, but that 

genetic and plastic effects act in opposite directions, with the former enhancing competition 

and the latter decreasing it with increasing stress. But in order to assess the ecological 

consequences of phenotypic differentiation for the diversity of this subalpine system, it is 

worth trying to evaluate which of the genetic and plastic components have a higher effect on 

diversity. Diversity is thought to increase in semi-stressful environments due to the decrease 

in competition (Grime, 1973) and to an increase in facilitation (Hacker & Gaines, 1997; 

Michalet et al., 2006), and again to decrease at extreme stress level due to the collapse of 
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facilitation (Michalet et al., 2006) and the too stressful conditions for most plants (Grime, 

1974), as shown by Le Bagousse-Pinguet et al. (2014) in the same subalpine system. Thus, as 

the habitat of the tight phenotype is located in semi-stressful conditions (Le Bagousse-Pinguet 

et al., 2014) we may predict that diversity should increase from the natural habitat of loose F. 

gautieri cushions (low stress and high competition) to that of the tight ones (high stress), as 

plasticity effects reduce competition. However, the opposite pattern is observed in our system, 

as diversity decreased from loose to tight cushion habitats. We argue that this is most 

probably due to the genetically-driven higher competitive effect of tight cushions in the high 

stress habitat, which counteracts plasticity effects. Thus, for diversity we conclude that 

genetic effects overcome plasticity effects. 
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Fig. S1 Means + SE (n = 8) of survival (September 2013) of A. capillaris (a), the tight F. gautieri (b) 

and the loose F. gautieri targets (c) in the three neighbouring conditions (open area: no neighbour, 

within tight F. gautieri cushions and within loose F. gautieri cushions) in the convex and concave 

gardens. Significant results of the two-way ANOVAs on the effects of the Garden (G), Neighbour (N) 

treatments and their interactions are indicated: *, P < 0.05; **, P < 0.01.  
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Fig. S2 Means ± SE (n = 8) of RIIsurvival (September 2013) of the three targets (A. capillaris, the tight 

F. gautieri and the loose F. gautieri) calculated for both cushion phenotypes in the convex and 

concave gardens. Significant results of the three-way ANOVA on the effects of the Garden (G), 

Phenotype (P), Target (T) treatments and their interactions are indicated. Results of one sample t-tests 

are shown above error bars: (*), P < 0.1; *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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Fig. S3 Means + SE (n = 8) of survival (June 2014) of A. capillaris (a), the tight F. gautieri (b) and the 

loose F. gautieri targets (c) in the three neighbouring conditions (open area: no neighbour, within tight 

F. gautieri cushions and within loose F. gautieri cushions) in the convex and concave gardens. 

Significant results of the two-way ANOVAs on the effects of the Garden (G), Neighbour (N) 

treatments and their interactions are indicated: (*), P < 0.1; *, P < 0.05; ***, P < 0.001.  
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Fig. S4 Total leaf number (September 2013) of the three target species transplanted within and outside 

Festuca gautieri cushions. Means + SE (n = 8) of total leaf number in September 2013 of A. capillaris 

(a), the tight F. gautieri (b) and the loose F. gautieri targets (c) in the three neighbouring conditions 

(open area: no neighbour, within tight F. gautieri cushions and within loose F. gautieri cushions) in 

the convex and concave gardens. Significant results of the two-way ANOVAs on the effects of the 

Garden (G), Neighbour (N) treatments and their interaction are indicated: *, P < 0.05; ***, P < 0.001. 

Results of Tukey tests are shown on top of error bars when a significant Garden x Neighbour (G x N) 

interaction is shown. 
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Table S1 Results of the one-way ANOVAs on the effect of the Phenotype treatment on species 

richness and abundance of subordinate plant species in the natural habitats of F. gautieri cushions. 

Significant results are shown in bold. ***, P < 0.001  

 

 

 

 

 

 
Table S2 Results of the two-way ANOVAs on the effects of the Garden (G), Phenotype (P) treatments 

and their interaction (G x P) on cushion surface, leaf length, cushion penetration, leaf thickness and 

leaf density of F. gautieri cushions. Significant results are shown in bold. *, P < 0.05; **, P < 0.01; 

***, P < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 
Table S3 Results of the two-way ANOVAs on the effects of the Garden (G), Neighbour (N) 

treatments and their interaction on survival (September 2013) of A. capillaris, the tight F. gautieri and 

the loose F. gautieri targets. Significant results are shown in bold. *, P < 0.05; **, P < 0.01  

 

 

 

 

 

  

  Species richness  Abundance 
 df F P  F P 
Phenotype 2 18.88 <0.001 ***  19.54 <0.001 *** 
Error 75      

  Cushion surface  Leaf length  Cushion penetration 
 df F P  F P  F P 
Garden 1 125.73 <0.001 ***  56.76 <0.001 ***  54.22 <0.001 *** 
Phenotype 1     1.36   0.253  12.76   0.001 **  24.09 <0.001 *** 
G x P 1     4.64   0.040 *    2.24   0.146    0.61   0.443 
Error 28         
          
  Leaf thickness  Leaf density    
 df F P  F P    
Garden 1   4.96   0.034 *  54.32 <0.001 ***    
Phenotype 1 61.61 <0.001 ***    2.11   0.158    
G x P 1   0.98   0.330  75.53 <0.001 ***    
Error 28         

  A. capillaris  Tight F. gautieri  Loose F. gautieri 
 df F P  F P  F P 
Garden 1 0.04 0.840  1.04 0.314  4.82 0.034 * 
Neighbour 2 2.15 0.129  7.05 0.002 **  6.07 0.005 ** 
G x N 2 1.38 0.264  7.30 0.002 **  3.49 0.040 * 
Error 42         
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Table S4 Results of the three-way ANOVA on the effects of the Garden (G), Phenotype (P), Target 

(T) treatments and their interactions on RIIsurvival (September 2013) of the three targets (A. capillaris, 

the tight F. gautieri and the loose F. gautieri). Significant results are shown in bold. (*), P < 01; *, P < 

0.05; ***, P < 0.001 

 

  

 
 

 

 
Table S5 Results of the two-way ANOVAs on the effects of the Garden (G), Neighbour (N) 

treatments and their interaction on survival (June 2014) of A. capillaris, the tight F. gautieri and the 

loose F. gautieri targets. Significant results are shown in bold. (*), P < 0.1; *, P < 0.05; **, P < 0.01; 

***, P < 0.001  

 

 

  

  RIIsurvival 
 df F P 
Garden 1 28.44 <0.001 *** 
Phenotype 1   3.74   0.056 (*) 
Target 2   8.07 

 

<0.001 *** 
G x P 1   1.44   0.233 
G x T 

 

2   3.87   0.025 * 
P x T 2   1.32   0.273 
G x P x T 2   2.16   0.121 
Error 84   

  A. capillaris  Tight F. gautieri  Loose F. gautieri 
 df F P  F P  F P 
Garden 1   0.17   0.686  0.21 0.649  4.44 0.041 * 
Neighbour 2 13.80 <0.001 ***  6.89 0.003 **  1.68 0.199 
G x N 2   0.65   0.528  2.68 0.080 (*)  1.48 0.240 
Error 42         
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Table S6 Results of the three-way ANOVA on the effects of the Garden (G), Phenotype (P), Target 

(T) treatments and their interactions on RIIsurvival (June 2014) of the three targets (A. capillaris, the 

tight F. gautieri and the loose F. gautieri). Significant results are shown in bold. *, P < 0.05; **, P < 

0.01; ***, P < 0.001 

 

 

 

 

 

 

 

 

 

 

 
 
Table S7 Results of the two-way ANOVAs on the effects of the Garden (G), Neighbour (N) 

treatments and their interaction on total leaf number of A. capillaris, the tight F. gautieri and the loose 

F. gautieri targets. Significant results are shown in bold. *, P < 0.05 ; ***, P < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  RIIsurvival 
 df F P 
Garden 1 11.02   0.001 ** 
Phenotype 1 12.73 <0.001 *** 
Target 2   9.44 <0.001 *** 
G x P 1   0.12   0.727 
G x T 

 

2   1.79   0.174 
P x T 2   2.10   0.129 
G x P x T 2   3.23   0.044 * 
Error 84   

  A. capillaris  

 

Tight F. gautieri  

 

Loose F. gautieri 
 df F P F P F P 
Garden 1   1.33   0.255  1.36 0.250  0.28 0.599 
Neighbour 2 43.32 <0.001 ***  0.38 0.687  0.84 0.437 
G x N 2   4.21   0.022 *  1.31 0.281  4.13 0.023 * 
Error 42         
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Table S8 Results of the three-way ANOVA on the effects of the Garden (G), Phenotype (P), Target 

(T) treatments and their interactions on RIItotal leaf number (September 2013) of the three targets (A. 

capillaris, the tight F. gautieri and the loose F. gautieri). Significant results are shown in bold. *, P < 

0.05; ***, P < 0.001  

  

 

 

 

 

 

 

 

 

 

 

Table S9 Results of the two-way ANOVAs on the effects of a) Garden (G), Neighbour (N) treatments 

and their interaction on species richness and abundance of naturally re-established plant species, and 

b) Garden (G), Phenotype (P) treatments and their interaction on RIIrichness and RIIabundance of naturally 

re-established plant species. Significant results are shown in bold. (*), P < 0.1; *, P < 0.05; ***, P < 

0.001 

  

 

 

 

 RIItotal leaf number 
 df F P 
Garden 1   4.18   0.044 * 
Phenotype 1   1.82   0.182 
Target 2 23.76 <0.001 *** 
G x P 1   0.13   0.722 
G x T 2   4.23   0.018 * 
P x T 2   0.19   0.830 
G x P x T 2   0.42   0.661 
Error 80   

a)  Species richness  Abundance 
 df F P  F P 
Garden 1 15.10 <0.001 ***  0.17 0.683 
Neighbour 2   0.49   0.613  3.35 0.045 * 
G x N 2   1.97   0.152  1.38 0.264 
Error 42      
b)  RIIrichness  RIIabundance 
 df F P  F P 
Garden 1 24.20 <0.001 ***  5.62 0.025 * 
Phenotype 1   4.09   0.053 (*)  11.9

 

0.002 * 
G x P 1   2.95   0.097 (*)  1.84 0.186 
Error 28      
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Summary 

Questions: Are variable effects of different phenotypes of foundation plant species on 

subordinates across contrasting habitat conditions (with varying stress and disturbance levels) 

due to either varying environmental conditions or heritable differences in traits between 

phenotypes? To evaluate the contribution of environmental effects we quantified the effects of 

contrasting phenotypes of a foundation legume shrub on their subordinate species across 

exposure (drought stress) and grazing conditions. 

Location: A sub-alpine xerophytic community of western Mount Lebanon, Lebanon. 

Methods: For two phenotypes of the spiny cushion shrub Onobrychis cornuta, a facilitative 

phenotype that occurs in concave topographies (mesic soil) and a competitive phenotype that 

occurs in convex topographies (xeric soil), we quantified cushion traits, environmental 

conditions and subordinate plant species abundances (within and outside the cushions) for the 

two phenotypes in northern (low stress) and southern (high stress) exposures, and with and 

without grazing. Relative interaction index (RII) for subordinate species richness and 

abundance was calculated in the eight treatment combinations and a correspondence analysis 

(CA) was conducted on species composition. 

Results: Drought stress exacerbated phenotypic effects in southern exposure, with loose 

phenotypes being more facilitative and tight phenotypes more competitive than in northern 

exposure. This was related to both changes in cushion traits of the two phenotypes and to an 

increase in the pool of subordinate species sensitive to cushion effects. In contrast, grazing 

increased cushion positive effects of both phenotypes through the occurrence of indirect 

facilitation, with loose phenotypes becoming more facilitative and tight phenotypes less 

competitive. This was due both to changes in cushion traits of the two phenotypes and to their 

shared spiny phenotype limiting grazing effects. 

Conclusions: Because increasing stress from northern to southern exposure did not increase 

competitive effects of either phenotype, and because the cessation of grazing did not cancel 

out differences in facilitative effects between phenotypes, neither drought stress nor grazing 

disturbance appeared to be the main drivers of the observed phenotypic effects on subordinate 

species across habitats. We conclude that differences in phenotypic effects of this legume 

shrub are very likely due to heritable differences in traits between phenotypes. 

Keywords:  Community phenotypes; Competition; Cushion plants; Exposure; Facilitation; 

Foundation species; Grazing; Indirect facilitation; Mount Lebanon; Onobrychis cornuta. 
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Nomenclature: Euro+Med (2006-): Euro+Med PlantBase - the information resource for 

Euro-Mediterranean plant diversity. Published on the Internet 

http://ww2.bgbm.org/EuroPlusMed/ [March 2014]. 

 

Abbreviations:  ANOVA = Analysis of Variance; CA = Correspondence Analysis; RII = 

Relative Interaction Index.  
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Introduction 

Plant–plant interactions (competition and facilitation) have been an important topic of interest 

in the community ecology literature for several decades (Grime 1974; Tilman 1982; Bertness 

& Callaway 1994; Bruno et al. 2003; Brooker et al. 2008). Most studies have focused on 

changes in interactions along environmental gradients, with several models proposed in the 

literature (Grime 1974; Tilman 1982; Bertness & Callaway 1994; Maestre & Cortina 2004; 

Michalet et al. 2006; Holmgren & Scheffer 2010). In dry ecosystems there is a debate on the 

likely occurrence of a shift from competition to facilitation with increasing drought, as 

originally proposed by Bertness & Callaway (1994), i.e. the stress gradient hypothesis 

(Maestre et al. 2005; Lortie & Callaway 2006; He et al. 2013; He & Bertness 2014; Michalet 

et al. 2014). Herbivory pressure also alters plant–plant interactions, decreasing competition 

(Grime 1974) and potentially increasing indirect facilitation processes (Bertness & Callaway 

1994). The interaction between grazing and drought has recently been assessed, in particular 

in the context of global change, with most studies showing the occurrence of a collapse of 

interactions (i.e. decline and loss of all interactions) under both constraints (Kéfi et al. 2007; 

Smit et al. 2009; Soliveres et al. 2011; Maalouf et al. 2012; Verwijmeren et al. 2013; Le 

Bagousse et al. 2014). 

 However, there is a high contingency in biotic interactions (Chamberlain et al. 2014), 

and the identity of the interacting species has been shown to be as important as environmental 

conditions (Michalet 2007; Maestre et al. 2009; Soliveres & Maestre 2014). Facilitation 

studies have highlighted the importance of the functional strategy of the beneficiary species 

(Choler et al. 2001; Liancourt et al. 2005; Michalet et al. 2006; Forey et al. 2010; Gross et al. 

2010; Butterfield & Briggs 2011) and of the dominant benefactor or ‘nurse’ species (Michalet 

2007; Gross et al. 2008; Gomez-Aparicio 2009; Maestre et al. 2009; Pugnaire et al. 2011). 

 How phenotypic differentiation within dominant species may alter plant–plant 

interactions has been less well assessed (but see Callaway et al. 1991; Crutsinger et al. 2010), 

although community genetics studies have shown that phenotypic differentiation within 

foundation species (i.e. a species that structures a community by ameliorating abiotic stress 

and creating locally stable conditions for other species, and by modulating and stabilizing 

fundamental ecosystem processes; Ellison et al. 2005) has the potential to affect community 

structure through changes in effects on subordinate species (i.e. a species associated with the 

dominant foundation species; Whitham et al. 2006; Michalet et al. 2011). Additionally, very 

few studies have compared the relative contribution of environmental conditions and 

foundation plant species phenotype as drivers 
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of the foundation species effect on their subordinate species. 

 The strongest evidence of phenotypic effects on subordinate species has been revealed 

in systems where the varying phenotypes of a foundation species occur in similar 

environmental conditions (Callaway et al. 1991; Crutsinger et al. 2010). However, phenotypic 

differentiation within foundation species may also occur in different environ- mental 

conditions, in particular across topography and/or soil gradients (Choler & Michalet 2002; 

Michalet et al. 2011; Lekberg et al. 2012; Liancourt et al. 2013). Although both have been 

acknowledged to be important, the relative contribution of phenotypic differentiation and 

environmental conditions to foundation species effects on neighbours is poorly studied. 

 One way to straightforwardly assess the relative contribution of heritable phenotypic 

variation and of different environmental conditions is to quantify the interactions with 

subordinate plant species of transplanted individuals of different phenotypes in contrasting 

environments. However, in most systems, such as the alpine community of Michalet et al. 

(2011), this experimental test is almost impossible even on a long-time scale because of both 

the very low growth rate of the often long-lived foundation species and the necessity to have 

adult transplants to really assess the contrasting effects of different phenotypes (Liancourt et 

al. 2009; Le Bagousse-Pinguet et al. 2013). We suggest that an alternative method for at least 

qualitatively assessing the contribution of varying environmental conditions on the 

contrasting effects of different foundation plant species phenotypes is an assessment of the 

effects of such phenotypes on subordinate species across contrasting environmental 

conditions (see also Callaway et al. 1991). For example, an assessment of the effects of 

different phenotypes in two contrasting (local) conditions of environ- mental severity may be 

an appropriate test to decipher the contribution of both drivers. Specifically, if changes in 

interactions across phenotypes are mostly environmentally driven, then an increase in 

environmental severity should induce a similar increase in facilitation (or decrease in 

competition) irrespective of phenotypes. On the other hand, if the facilitation observed in a 

more fertile concave habitat by a known facilitative phenotype is higher than that observed in 

a convex habitat by a known competitive phenotype, and if this is due to increasing herbivory 

pressure (indirect facilitation) in the former, then a cessation of herbivory should cancel the 

facilitation observed in this habitat and thus the difference in phenotypic effects between 

habitats. 

 We assessed this issue in a sub-alpine system from Lebanon, with cushion-like dwarf 

thorny shrubs as foundation species, in particular the legume shrub Onobrychis cornuta (L.) 

Desv. We observed two different phenotypes of O. cornuta, a tight phenotype with entangled 
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stems forming compact cushions occurring on dry soils with convex topographies, and a loose 

phenotype with an open stem morphology occurring on mesic soils with concave 

topographies. Contrasting associational patterns with subordinate species along with 

contrasting flower production of the two phenotypes were also observed (Figs S1, S2). 

 Our main goal is to assess the contribution of environmental variation (stress and 

disturbance by grazing) and two contrasting phenotypes in driving changes in the association 

of O. cornuta with other species. Specifically, we aim to quantify differences in competitive 

and facilitative effects of the two foundation species cushion phenotypes (tight and loose), 

and to answer the following questions: (1) are these effects altered by varying environmental 

stress with exposure; and (2) are these effects affected by grazing disturbance? To answer 

these questions, we assessed differences in cushion traits, environmental characteristics, and 

composition, abundance and richness of subordinate species, in contrasting exposure and 

grazing conditions. These measurements were conducted in the habitats of the two 

phenotypes, both within and outside cushions. In our study, competition appears to be highest 

in the most stressful conditions (in dry outcrops for the tight phenotype) and facilitation 

highest in the most mesic ones (in concave slopes for the loose phenotype). Thus, 

if environmental stress is the main driver of changes in phenotypic effects across habitats, we 

predict that with increasing stress from northern to southern exposure, competition should 

increase for the tight phenotype and facilitation decrease for the loose one, consistent with 

Maestre & Cortina (2004). Additionally, if grazing disturbance is the main driver of changes 

in phenotypic effects habitats, through differences in grazing pressure habitats due to grazers’ 

preferences, we predict that differences in effects on other species among phenotypes should 

decrease with the cessation of grazing disturbance.  

Methods 

Study site and target species 

The research was carried out on the western side of Mount-Lebanon, 20 km East from the 

Mediterranean Sea, at Ouyoun El Simane - Kfardebian (33°59’ N, 35°51’ E, altitude: 2000 m 

a.s.l., Mount-Lebanon, Lebanon). Climate is Mediterranean with very high precipitation in 

winter (mainly snow) and very low during summer (950 mm and 10 mm, respectively, with 

1720 mm of annual rainfall). Mean temperatures are 2°C in winter and 16°C in summer. 

At this elevation on Mount-Lebanon and in general in the Middle East the dominant 

vegetation type is an oromediterranean open xerophytic community dominated by several 

spiny shrubs, mostly from the Fabaceae (Astragalus spp. and O. cornuta) and 

Plumbaginaceae (Acantholimon spp.; Quézel & Médail 2003). This vegetation type, located 

above the current timberline, results from centuries of grazing by domestic sheep (Ovis aries) 
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and goats (Capra hircus), following deforestation of Cedrus libani and Juniperus excelsa 

forests. Our model species, O. cornuta (L.) Desv., the horned sainfoin, is common at high 

elevations from Lebanon in the Middle East to Kyrgyzstan and Pakistan in Central Asia. It is 

a spiny shrub forming flattened circular to elliptic cushions with highly entangled branches 

and many axillary peduncles differentiated into rigid sterile or flowering thorns exceeding 

short green leaves. Fertile stems hold pubescent spineless pods of 6- to 8-mm long, and 10-15 

mm bright purple-pink flowers (Tohmé & Tohmé 2014), blooming from May to July and 

providing nectar for insects. Although the species has low palatability due to its small leaves 

and spines (Diaz et al. 2001), it may provide forage for grazing animals such as sheep in the 

absence of more palatable species (Shahriary et al. 2012). Shepherds often burn old cushions 

(P. Al Hayek pers. obs.). 3 

 At our study site, O. cornuta is the dominant spiny shrub, acting as a foundation 

species hosting most other species of the community (Ellison et al. 2005). Two different 

phenotypes differing in their associations with other species occur in two different 

topographic positions and soil conditions (Figs S1 and S2). In convex topographies and on 

shallow stony soils (stone cover = 47.56 ± 2.38%, n = 80) the dominant phenotype is a tight 

compact cushion characterized by dense stem morphology. In concave topographies and on 

deeper and less stony soils (stone cover = 37.13 ± 2.45%, n = 80), the dominant phenotype is 

a loose cushion characterized by loose stem morphology with open areas within its canopy. 

We observed contrasting patterns of association with other plant species along with 

contrasting cushion flower productions. Tight phenotypes have a low cover of other species 

and a very high flower production, whereas loose phenotypes have a high cover of other 

species and a low flower production, suggesting a probable reproductive cost for loose 

phenotypes for hosting other species (Michalet et al. 2011; Schöb et al. 2014). The 

community includes up to 60 species, the most common among them are Bromus tomentellus 

Boiss., Festuca pinifolia (Hack.), Alyssum condensatum Boiss, Asyneuma rigidum (Wild.) 

Grossh subsp. sinai, Festuca sp., Asperula setosa Jaub. & Spach., Cruciata pedemontana 

(Bell.) and Prunus prostrata Labill. 

 

Data collection 

In order to answer our two main questions, for both phenotypes we measured cushion traits 

and environmental conditions, and quantified subordinate species composition in two 

contrasting exposures and grazing conditions. The ungrazed plots were located in a protected 

area of 450 000 m2 fenced in 2008, and the grazed plots no further than 500 m outside the 
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fenced area. The grazed and ungrazed areas were located at the same elevation, on the same 

calcareous rock, and both included contrasting exposures. Mount Lebanon is formed of very 

similar rolling hills of calcareous rocks, thus minimizing the problem of pseudo-replication 

inherent to designs including large fenced and unfenced areas. In each of the two grazing 

treatments, and in both northern and southern exposures, we randomly selected 20 cushions of 

each phenotype and 20 paired open plots (total: 320 plots). The 20 pairs of each phenotype 

were selected on a minimum of five hills per grazing condition. Each open plot was located at 

a very short distance (<2 m) from its paired cushion and in the microtopographic position; the 

areas of the open plots were delimited using a flexible wire to occupy a similar area as the 

paired cushion. We used the term ‘Microsite’ for each pair of cushion-paired open plots. For 

the 160 selected cushions we measured, in June 2012, cushion surface, height, penetration (an 

index of cushion compactness and interference; Al Hayek et al. 2014), stem number and 

flower number. Penetration was measured to a precision of 1 mm by loosely introducing a 

metal ruler vertically within the cushion. Stems and flowers were counted within 100 cm2 of 

cushion area. In order to assess the environmental conditions of each cushion, we recorded 

stone cover at the soil surface and the degree convexity of the cushions’ microhabitats using 

five classes (from 1: very concave, to 5: very convex). We recorded the number of individuals 

of all vascular species present in the cushions and the paired open areas, and calculated 

species richness for both plots. To quantify the net effect of each cushion individual on other 

species in each combination of the states of our three factors (exposure, grazing, phenotype), 

we calculated the relative interaction index (RII) for species richness (number of species; 

RIIRichness) and for abundance (number of individuals of all species; RIIAbundance) following 

Armas et al. (2004):  

RII = (Pcushion - Popen)/( Pcushion + Popen) 

where Pcushion and Popen represent the species richness (number of species) or abundance 

(number of individuals of other species) within the cushion and the open paired plots, 

respectively. This index is symmetrical around zero (no significant interaction), and has 

defined limits between -1 and +1; negative values indicate competition whereas positive 

values reflect facilitation.  

 

Data analysis 

Differences in cushion traits and environmental conditions were analysed using a three-way 

ANOVA model (followed by Tukey tests when necessary) with Grazing, Exposure and 

Phenotype as factors, and the five cushion traits (cushion surface, height, penetration, stem 

number and flower number) and two environmental variables (soil convexity and stone cover) 
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as dependent variables. Differences in net effects of cushions on species richness and 

abundance were analysed using a three-way ANOVA model with Grazing, Exposure and 

Phenotype as factors, and RIIRichness and RIIAbundance as response variables. One sample t-tests 

were used to analyse significant deviation of RII values from zero, which represents no 

cushion effect. 

 In order to assess the effects of the Grazing, Exposure, Phenotype and Neighbour 

treatments on species composition, we conducted a correspondence analysis (CA) on the 320 

plots. We excluded 21 (out of 76) species with a frequency below five in the whole data set 

(and three plots with no species), in order to avoid rare species effects. To test if treatments 

significantly affected species composition, a mixed model ANOVA was performed on CA 

relevée scores, separately for each CA axis, with Grazing, Exposure and Phenotype treated as 

fixed effects, and Neighbour nested within Microsite as the random effects structure. We also 

conducted a cluster analysis on CA species scores in order to identify groups of species with 

similar responses in the CA. In order to assess the effect of the four treatments on the 

abundances of the species of each cluster group, a mixed model ANOVA was performed on 

the pooled species abundance of each cluster group, with Grazing, Exposure and Phenotype 

treated as fixed effects, and Neighbour nested within Microsite treated as the random effects. 

Dependent variables were checked for normality and log-transformed before ANOVAs. All 

statistical analyses were done using R (R Foundation for Statistical Computing, Vienna, AT). 

 

Results 

Morphological differences between tight and loose phenotypes of O. cornuta were highly 

significant for the five measured traits (phenotype effect, P < 0.001; Table S1). Tight 

phenotypes were larger, higher, tighter (lower penetration and higher stem density) and had 

more flowers than loose phenotypes (Fig. 1, Table S1). Additionally, for both cushion surface 

and height, there was a significant Grazing x Phenotype interaction, because grazing 

decreased both traits for tight phenotypes but not for loose ones (Fig. 1a,b). Cushion surface 

and height decreased with grazing for southern-exposed phenotypes, but not for northern-

exposed phenotypes (significant and marginally significant Grazing x Exposure interaction, 

respectively; Fig. 1a,b). There was a significant Exposure x Phenotype interaction on cushion 

penetration due to a higher difference between phenotypes in southern vs. northern exposure 

(Fig. 1c). There was a highly significant Exposure effect on number of flowers due to higher 

flower number in northern than southern exposures, and this difference was highest for grazed 

tight phenotypes and the lowest for the ungrazed loose phenotype (marginally significant 
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Grazing x Exposure x Phenotype interaction; Fig. 1d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Means ± SE (n = 20) of cushion surface (a), cushion height (b), cushion penetration (c) and 

number of flowers (d) of tight and loose phenotypes of O. cornuta under ungrazed and grazed 

conditions in northern and southern exposures. Significant results of three-way ANOVAs on the 

effects of Grazing (G), Exposure (E), Phenotype (P) and their interactions are shown in the upper left 

part of each panel: (*): P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 0.001. 

 

The RIIRichness values were overall weakly positive, except for tight phenotypes from southern 

ungrazed habitats, which had a negative RIIRichness (Fig. 2a). There was a significant 

Exposure x Phenotype interaction (Table S2) due to a decrease in RIIRichness for tight 

phenotypes from northern to southern exposures, but no change for loose phenotypes. 

Additionally, there was a marginally significant Grazing effect due to an overall increase in 

RII leading to significant RII in all grazed habitats except south-exposed tight ones. For 

RIIAbundance there was a highly significant Phenotype effect, with highly positive RII for loose 

phenotypes but not for tight ones (Fig. 2b, Table S2). RIIAbundance was significantly negative 
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for ungrazed tight phenotypes from southern exposures (one sample t-test; Fig. 2b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Means ± SE (n = 20) of RIIRichness (a) and RIIAbundance (b) of subordinate plant species for the two 

phenotypes under ungrazed and grazed conditions in northern and southern exposures. Significant 

results of three-way ANOVAs on Grazing (G), Exposure (E), Phenotype (P), and their interactions are 

shown in the upper left part of each panel, and significant results of one sample t-tests on RII values 

are shown above error bars: (*): P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 0.001. 

 

 

 The CA revealed important differences in species com- position related to the 

Exposure, Grazing, Phenotype and Neighbour treatments. CA axis 1 was primarily influenced 

by Exposure and secondarily by Grazing (P < 0.001 for both treatments; Fig. 3a, Table S3). 

All south-exposed plots were located in the positive half of CA axis 1 and all north-exposed 

plots in the negative half, while within each exposure group, grazed plots had higher scores 

than ungrazed ones. There was also a significant Grazing x Exposure x Phenotype interaction 

on CA axis 1, with plots from loose phenotype habitats having higher scores than those from 

the tight phenotype, but only in the presence of grazing and in northern exposures. The second 

main source of variation in species composition, observed on CA axis 2, was due to additive 

effects of the Phenotype and Neighbour treatments, with the highest scores observed for loose 

phenotype plots and the lowest for open plots of the tight phenotype habitats (Fig. 3a, Table 
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S3). There was also a significant Grazing x Exposure interaction on CA axis 2, with grazed 

plots having lower scores than un- grazed ones in northern exposures only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  CA diagrams of relevés (a) and species (b). The relevés diagram represents the mean relevés 

scores ± SE of the four treatment-combinations (treatment-combination codes: U: ungrazed; G: 

grazed; N: north; S: south; T: tight; L: loose; o: open). Results of four-way ANOVAs on the effects of 

Grazing (G), Exposure (E), Phenotype (P), Neighbour (N) and their interactions are shown below axis 

1 and at the right of axis 2: (*): P < 0.1; *: P < 0.05; **: P < 0.01; ***: P < 0.001. (b) Mean CA1 and 

CA2 scores ± SE are displayed for species cluster group (A, B, C, D, E and F). 

 

 Six main groups were generated from the cluster analysis conducted on CA species 
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scores (Figs 3b and S3, Table S4). Groups A and B included species more frequent in 

southern exposures (e.g. Bromus intermedius, Bromus tomentellus, Festuca pinifolia, Lamium 

amplexicaule; positive scores on CA 1 axis), whereas groups D, E and F included species 

more frequent in northern exposures (e.g. Corydalis rutifolia, Cyanus triumfetti, Dactylis 

glomerata, Pimpinella tragium, Prunus prostrata, Viola libanotica; negative scores on CA 1 

axis). Additionally, species from groups B, E and F (e.g. Bromus tomentellus, Corydalis 

rutifolia, Cyanus triumfetti, Dactylis glomerata, Festuca pinifolia and Pimpinella tragium) 

were more frequent within rather than away from cushions (positive scores on CA 2 axis), 

with species from the two former groups occurring mostly in loose phenotypes, whereas those 

from the latter were equally frequent in both cushion phenotypes (Figs 3b and S3, Table S4). 

In contrast, species from group A (e.g. Bromus intermedius and Lamium amplexicaule) were 

more frequent outside than inside cushions and species from group D (e.g. Prunus prostrata 

and Viola libanotica) were more frequent in tight- rather than loose-phenotype habitats 

(negative scores on CA 2 axis). Finally, species from group C (e.g. Brunnera orientalis, 

Gagea liotardii and Lamium garganicum subsp. striatum) were more frequent in north-

exposed open plots in ungrazed conditions rather than south-exposed cushions in grazed plots 

(significant Grazing x Exposure and Grazing x Neighbour interactions; Table S4). Species 

from the two southern exposure groups had contrasting life-history traits: group A (open 

plots) including 14 short-sized annual species (mostly Asteraceae with a ruderal strategy), and 

group B (loose phenotypes) comprising seven perennials, and among them two very abundant 

bunch grass species (B. tomentellus and F. pinifolia). Species from the northern exposure 

groups were less different than species from the two southern exposure groups. Group F 

(within cushions) included tall species from grazed nitrogen-enriched sites, among them 

Cyanus triumfetti and D. glomerata, group E (loose cushions) mostly small geophytes (P. 

tragium, C. rutifolia, Bunium paucifolium) and group D (tight phenotype habitats) a mix of 

annuals and perennials, among them the creeping shrub P. prostrata. Finally, group C 

included the tallest subordinate species, among them several perennials (Brunnera orientalis, 

Geranium libanoticum, Minuartia juniperina and Lamium garganicum subsp. striatum). 

   

 122 



 
 

 

Discussion 

We found that differences in phenotypic effects varied in intensity depending on the 

performance variable (species richness or abundance) of the subordinate species, and were 

significantly affected by variation in environmental conditions. With increasing drought stress 

from northern to southern exposure, both competition and facilitation increased for the tight 

and loose phenotypes, respectively, thus exacerbating differences in phenotypic effects. 

Moreover, the cessation of grazing did not decrease differences in phenotypic effects, but 

rather increased negative effects for both phenotypes (i.e. increased competition for the tight 

phenotype, and decreased facilitation for the loose phenotype). These results, and the strong 

differences in traits among phenotypes (e.g. cushion penetration; Fig. 1c), suggest that 

differences in effects of the two phenotypes on subordinate species across habitats are not 

driven by changes in environmental conditions, but rather by other effects, among which are 

possible heritable differences between phenotypes. This is an important novel result, as most 

plant–plant interaction studies have focused on the importance of environmental conditions in 

changing competition and facilitation intensity or importance across habitats, neglecting the 

likely contribution of heritable differences between phenotypes. The most important 

phenotypic effect on subordinate species was found for abundance, with high facilitation in 

loose phenotypes and no significant or negative interaction in tight phenotypes. Over all 

exposure and grazing conditions, in the loose phenotype habitats the abundance of 

subordinate species was much higher in cushions than in surrounding open areas, whereas 

there were no such differences between cushions and open areas in the tight phenotype 

habitats. In contrast, there were no phenotypic effects on subordinate species richness. There 

were up to twice as many species within loose compared to tight phenotypes but this 

difference was due to habitat conditions, with presumably more favourable conditions in the 

loose phenotype habitats, and not to cushion effects because the same pattern was observed in 

the open plots (data not shown). Results of the CA showed that phenotypic effects on 

community composition were weak, and that most variation in community composition was 

explained by environmental conditions, i.e. exposure and grazing. However, there were subtle 

differences on CA axis 2 due to increasing abundance in the loose phenotypes for some 

species, depending on exposure conditions (group E in northern exposure and B in southern 

exposure, and in particular the dominant B. tomentellus). Since most phenotypic effects were 

observed for species abundance but not for community composition, there were no true 

community phenotypes (sensu Whitham al. 2003) within our system. Most evidence of 

community phenotypes has come from interactions across trophic levels, and in particular for 

plant–insect herbivore interactions, where specific plant genotypes are known to host 
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particular herbivores (e.g. Crutsinger et al. 2006). In the case of plant–plant interactions, the 

occurrence of true community phenotypes seems to be more likely when phenotypic effects 

are due to contrasting leaf chemistry (Pakeman et al. 2006; Adams et al. 2011) rather than to 

contrasting plant architectures (Callaway et al. 1991; Crutsinger et al. 2010; Michalet et al. 

2011). Our results are consistent with those of previous studies because differences in 

competitive and facilitative effects between the two phenotypes of O. cornuta were highly 

correlated to differences in cushion architecture (with larger, higher and tighter cushions for 

tight than loose phenotypes), and we found weak differences in subordinate species 

composition between phenotypes (i.e. community phenotypes), but only for species 

abundances. The negative effect of tight phenotypes on subordinate species were likely more 

due to interference mechanisms than to resource competition, as shown by Michalet et al. 

(2011) in northern Arizona (USA) for the alpine foundation cushion species Geum rossii. 

 Drought stress related to exposure enhanced facilitative and competitive effects on 

subordinate species of loose and tight phenotypes, respectively, both for species richness and 

abundance (Fig. 2). Two different processes may explain this enhancement of phenotypic 

effects in southern exposure. First, the CA results showed that the number of subordinate 

species sensitive to the effects of the two phenotypes was much higher in southern-exposed 

plots. In southern exposures, there were 14 annuals (species group A) negatively affected by 

both cushion phenotypes, and seven perennials (species group B and in particular the 

abundance of B. tomentellus) positively affected by the loose phenotypes, whereas in 

northern-exposed plots only four perennials (species group E) were positively affected by 

loose phenotypes and no species were negatively affected by cushions. Thus, in south-

exposed plots, 21 species were sensitive to the contrasting effects of the two phenotypes vs. 

only four species in northern exposure. Second, changes in cushion traits with exposure 

certainly contributed to exacerbating phenotypic effects in southern expo- sure. Loose 

phenotypes were less tight (higher penetration) and both phenotypes had a higher height in 

southern- compared to northern-exposed plots (Fig. 1). The decrease in cushion height from 

southern to northern exposure might be due to increasing snow cover duration in the less 

sunny northern exposure, which effect is known to negatively affect woody species (Kudo & 

Ito 1992; Nykänen et al. 1997; Michalet et al. 2002). Taller cushions in southern exposure 

might have stronger effects on subordinate species than smaller northern cushions, as shown 

by Le Bagousse-Pinguet et al. (2013) in coastal dunes for the nurse shrub Helichrysum 

stoechas subjected to contrasting fertilization levels. 

 To summarize, increasing stress in our system from northern to southern exposure 

strongly exacerbated phenotypic effects, likely because of both increasing the pool of 
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sensitive subordinate species and enhancing facilitative and competitive traits of the cushions. 

We acknowledge that differences in soils across microhabitats of the two phenotypes are not 

solely related to water availability but also to contrasting soil fertilities. However, because 

with increasing drought stress from northern to southern exposures loose phenotypes became 

more facilitative and tight phenotypes more competitive, the contrasting phenotypic effects of 

the two phenotypes are unlikely driven by changes in drought stress across phenotypes’ 

habitats. Indeed, this alternative hypothesis would have been sup- ported if the effects of both 

phenotypes had changed in the same direction with increasing drought stress. Specifically, in 

our system where competition is highest in the most stressful habitat, consistent with Maestre 

& Cortina (2004), competitive effects should have increased for both phenotypes from 

northern to southern exposure to support this hypothesis. 

 For both subordinate species richness and abundance, grazing increased the facilitative 

effects of the loose phenotypes and reduced the competitive effects of the tight phenotypes 

(Fig. 2). This was particularly the case for species of cluster group C (Fig. S3c), including the 

tallest species among subordinates, i.e. the likely least stress-tolerant species (sensu Grime 

1974). For these species the presence of herbivores shifted cushion effects from competitive 

(in absence of herbivores) to facilitative, regardless of cushion phenotypes, overall decreasing 

the competitive effects of the tight phenotype and increasing the positive effects of the loose 

one. This shows that the contrasting positive and negative effects of the two phenotypes on 

subordinate species were definitely not induced by differences in grazing intensity across the 

phenotypes’ habitats. Associational defences (protection against herbivores) have been widely 

recorded in highly grazed communities (Bertness & Callaway 1994; Baraza et al. 2006), in 

particular within systems including spiny shrubs (Rousset & Lepart 2000; Milchunas & Noy-

Meir 2002; Rebollo et al. 2002; Baraza et al. 2006; Smit et al. 2007). Consistently, in our 

system both spiny O. cornuta phenotypes acted as a physical barrier under heavy herbivory, 

protecting grazing-intolerant subordinate species from grazers. Thus, the presence of 

herbivores increased indirectly the positive effects of O. cornuta cushions. Moreover, 

grazing-induced changes in cushion traits might have modified the direct cushion effects on 

subordinate species. Cushion surface increased for the loose phenotype, likely as a 

compensatory growth response to grazing (McNaughton 1983). This increase in cushion 

surface might have increased the direct positive effects of the loose phenotypes on 

subordinate species. In contrast, grazing reduced cushion surface and height for the tight 

phenotype, decreasing tight phenotypes’ interference (direct negative effects) on subordinate 

species. This decrease in cushion size may be the result of a direct effect of grazing, although 

tight phenotypes are certainly poorly grazed due to their stiff spines. Additionally, shepherds 
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frequently burn old cushions in grazed areas, and it is likely that they select preferentially 

tight phenotypes because of their higher lignin content, which may also affect the class size 

distribution of tight phenotypes.  

 To summarize, grazing increased the positive effects of both phenotypes because of 

their shared spiny form, and because changes in cushion traits with grazing enhanced the 

positive effects of the loose phenotypes and decreased the negative effects of the tight 

phenotypes. This shows that the contrasting phenotypic effects of O. cornuta observed across 

habitats could not be caused by higher herbivory on loose phenotypes than on tight ones. 

Indeed, this alternative hypothesis would have been supported only if the difference in 

facilitative effects of both phenotypes had vanished with the cessation of grazing, consistent 

with Bertness & Callaway (1994). 

 To conclude, our results showed that neither drought stress related to exposure nor 

grazing disturbance appeared to be the main drivers of the observed differences in phenotypic 

effects on subordinate species across habitats. Differences in effects of O. cornuta phenotypes 

on subordinate species across habitats are thus very likely due to heritable differences in traits 

between phenotypes. Genomic investigation of the mechanism determining phenotypic 

variation (candidate gene approaches or transcriptome comparisons) could provide irrefutable 

evidence of the genetic basis of phenotypic differences within O. cornuta. In contrast, 

reciprocal transplantations of adult phenotypes are unfortunately unrealistic in the field with 

such a long-lived shrub species to really provide the additional evidence of genetically driven 

phenotypic effects on subordinate species suggested by our study. 
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Supporting Information 

 
 

 

Fig. S1. Subalpine xerophytic community of western Mount-Lebanon (Lebanon) dominated by two 

phenotypes of the spiny cushion shrub Onobrychis cornuta: a facilitative Loose-cushion phenotype 

(mostly downslope) with very few purple-pink flowers and a high abundance of subordinate, and a 

competitive Tight-cushion phenotype (mostly mid-slope) with many flowers and very few individuals 

of subordinate species. Photo taken at Ouyoun El Simane - Kfardebian, Mount-Lebanon, Lebanon. 

Photo courtesy of Patrick AL HAYEK.  
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Fig. S2. The two phenotypes of Onobrychis cornuta. The loose phenotype is on the left part of the 

photo, with very few flowers and a high abundance of subordinate species (mostly Bromus 

tomentellus) and the tight phenotype on the right part, with many purple-pink flowers and very few 

individuals of subordinate species. Photo taken at Ouyoun El Simane - Kfardebian, Mount-Lebanon, 

Lebanon. Photo courtesy of Patrick Al Hayek.  

 133 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3. Means ± SE (n = 20) of cumulated abundances of subordinate plant species for the species 

cluster groups A, B, C, D, E and F within tight and loose cushions and paired open plots for the two 

phenotypes of O. cornuta under ungrazed and grazed conditions in northern and southern exposures. 

Table S1. Results of three-way ANOVAs of the effects of Grazing (G), Exposure (E), 

Phenotype (P) and their interactions on cushion traits (surface, height, penetration, number of 

stems and number of flowers) and cushion environmental conditions (convexity and stone 

cover). (*): P < 0.1; *: P < 0.05, **: P < 0.01; ***: P < 0.001 
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Table S2. Results of three-way ANOVAs of the effects of Grazing (G), Exposure (E), 

Phenotype (P) and their interactions on RIIRichness and RIIAbundance of subordinate plant species. 

(*): P < 0.1; *: P < 0.05; ***: P < 0.001  
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Table S3. Results of mixed model ANOVAs on the effects of Grazing (G), Exposure (E), 

Phenotype (P), Neighbour (N) and their interactions the relevés scores of CA axes 1 and 2, 

respectively. (*): P < 0.1; *: P < 0.05, **: P < 0.01; ***: P < 0.001 
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Table S4. Results of four-way ANOVAs of the effects of Grazing (G), Exposure (E), Phenotype (P), 

Neighbour (N) and their interactions on species cumulated abundances for each species cluster group. 

(*): P < 0.1; *: P < 0.05, **: P < 0.01; ***: P < 0.001 
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CHAPTER SIX: 

SYNTHESIS 
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This Ph.D. was conducted in the purpose of trying to understand the extended consequences 

of an intraspecific variation within foundation species across heterogeneous environments in 

mountain ranges. The main scope was to examine the relative contribution of genetics and 

plasticity to the phenotypic differentiation of two foundation plant species of subalpine and 

oromediterranean communities (F. gautieri in the French Pyrenees, and O. cornuta in the 

Mount-Lebanon range, respectively), and to their differential effects and consequences for the 

subordinate species. Two relevant points appeared recurrently in my experiments. The first is 

that morphological differences observed in the field between tight and loose phenotypes had 

both genetic and environmental (plasticity) determinisms, with however a higher contribution 

of phenotypic plasticity compared to genetic control. The second is that differences in 

morphologies induced heritable differences in competitive effects, which were not consistent 

to the general increase in competition with the decreasing stress dominantly found in the 

literature on subalpine systems and initially proposed by Grime (1974) and Bertness & 

Callaway (1994). Consequently, the maintenance of a higher diversity in stable environmental 

condition (absence of stress, i.e. loose cushions habitat) rather than in stressed conditions (i.e. 

tight cushion habitat) is only due to genetic effects that overcome the effects of the 

environment, thus limiting competition. 

 In the following, I first present evidence of the contribution of both genetics and 

plasticity to the phenotypic variation and its induced differential effects for F. gautieri (results 

from chapters 3 and 4) and O. cornuta (chapter 5), then I discuss the consequences of such 

variation on the subordinate species. Finally, I propose future studies to complete this work. 

 

 

1- Determinism of the observed phenotypic variation: the contribution of 

genetic variation and phenotypic plasticity 
 

1.1- The implication of genetics in the phenotypic variation 

  

Differences in morphological traits between tight and loose F. gautieiri cushions observed in 

the field were maintained throughout the shadehouse experiment (where replicates of both F. 

gautieri phenotypes were grown for two years under uniform environmental conditions), as 

all measured traits (maximum leaf length, cushion penetration, leaf thickness, cushion surface, 

and cushion leaf density) remained significantly different at the end of the experiment. These 

results were confirmed with Reciprocal Transplant Experiments (RTEs hereafter) conducted 
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in field conditions, thus supporting the genetic basis of trait differences. Additionally, patterns 

of adaptation were observed in the RTEs as each phenotype showed a home-site advantage in 

terms of cushion surface and leaf density (higher performance of tight cushions in the convex 

garden, and higher performance of loose cushions in the concave garden). This is consistent 

with the distribution patterns of tight and loose cushions in the field, and agrees with Le 

Bagousse-Pinguet et al. (2014b) who found contrasting survival responses between the tight 

and loose phenotypes along a soil moisture gradient in the same system, showing a more 

adapted tight phenotype to relatively high-stress conditions (stress-tolerant target) and more 

adapted loose phenotype to low-stress conditions (stress-intolerant target). For O. cornuta, 

such experiments were not feasible due to the very slow growth rate of this long-lived 

leguminous shrub, and the necessity to have adult plants to assess their effects on other 

species (Liancourt et al. 2009; Le Bagousse-Pinguet et al. 2013); however, a support to this 

likely genetic basis of the phenotypic variation within this species was possible by showing 

the non-implication of environmental stress and/or disturbance in the phenotypic variation 

between tight and loose cushions across natural habitats. 

 

1.2- The contribution of plasticity to the phenotypic variation  

 

Plasticity effects, as evidenced in both the shadehouse and the RTEs, in part induced changes 

in the morphological traits of F. gautieri cushions from the concave to the convex habitats in 

the field. In the shadehouse, watering the cushions increased their surface, leaf length, 

penetration and leaf density, and decreased leaf thickness. Similar patterns were found in the 

RTEs with the decrease of stress from the convex to the concave garden, except for leaf 

density that decreased for the tight phenotype and was not affected for the loose phenotype. 

This discrepancy between the shadehouse and the RTEs for leaf density might be due to the 

fact that the conditions in the shadehouse were not exactly representative of the field 

conditions, suggesting that factors other than water stress might be involved in modifying this 

trait. For O. cornuta, plasticity also affected morphological traits. Southern-exposed cushions 

were taller than northern-exposed ones and penetration increased for the loose cushions from 

northern to southern exposure (chapter 5). 

 

Is shape variation plastic or genetic? 

 

Overall, results of F. gautieri showed that for traits variation, plastic and genetic effects acted 

in the same direction with the strongest trait differences observed between tight phenotypes in 
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relatively high-stress conditions (dried cushions in the shadehouse, and convex garden in the 

RTEs) and loose phenotypes in low-stress conditions (watered cushions in the shadehouse, 

and concave garden in the RTEs). This indicates an advantage for each phenotype within its 

natural habitat, and thus an adaptation to its habitat conditions. However, both in the 

shadehouse and the RTEs we found that, overall, plasticity had a higher impact than genetics 

in modifying cushion traits. This is consistent with Bresson et al. (2010) who showed for 

Fagus sylvatica and Quercus petraea in the French Pyrenees that both genetics and plasticity 

contributed to the phenotypic variation in leaf morphological and physiological traits, with a 

higher contribution of plasticity. Also, Vitasse et al. (2009) showed the contribution of both 

heritable and environmental effects to the phenological traits of Quercus petraea and 

Fraxinus excelsior in the Pyrenees; however, for Fagus sylvatica, they showed opposite 

heritable and environmental effects, which contradicts our findings. Other authors also 

showed the implication of both genetics and plasticity in controlling morphological (Michalet 

et al. 2011) or physiological traits (Nielsen & Jorgensen 2003). 

 

2- Consequences of the phenotypic variation within foundation species on 

the subordinate species 
 

Previous studies have shown that architectural variation in a foundation species can trigger 

variation in competitive/facilitative effects on subordinate species (Callaway et al. 1991; 

Pugnaire et al. 1996; Rudgers & Maron 2003; Michalet et al. 2011), and that the genetic basis 

of morphological, phenological, or chemical composition variation may in turn affect 

community composition (Whitham et al. 2003, 2006; Johnson & Agrawal 2005; Pakeman et 

al. 2006; Bailey et al. 2011; Genung et al. 2011; Michalet et al. 2011). Accordingly, in my 

study, I show that differences in competitive ability between phenotypes of foundation 

species, due to genetic and plastic differences in architectural variation, explained differences 

in diversity or abundance of subordinate species. 

 

2.1- Differences in competitive effects between phenotypes: consequences for 

subordinate species 

 

2.1.1- Differences in effects due to genetics 

 

Tight cushions were shown to be genetically stronger effect-competitors than loose cushions 

both in the shadehouse under similar conditions (chapter 3) and in the two gardens (chapter 
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4), which is probably due to their genetically higher interference acquired with time through 

the development of more competitive traits (more compact cushions with thicker and stiffer 

leaves). In accordance with the SGH (Bertness & Callaway 1994), in my system competition 

increased in the field from the relatively high-stress habitat (tight cushions habitat, stressful 

conditions) to the low-stress habitat (loose cushions habitat, benign conditions) of F. gautieri 

cushions. In the third chapter of this thesis (article accepted in Oecologia), my colleagues and 

I predicted that: 

 

“[…] with increasing water availability from the tight phenotype’s habitat to the loose one, 

the competitive effect of both phenotypes should decrease since both showed an increase in 

cushion penetration with watering […]” (Al Hayek et al. 2014). 

 

However, this prediction did not hold in the RTEs, since competitive effects increased for 

both phenotypes from the water-stressed convex garden to the wet concave one, even though 

cushion penetration increased. This is most probably due to the absence of physical stress in 

the open areas from the concave garden, which allows the other species of the community to 

perform equally or even better outside than within neighbouring cushions (see Cavieres et al. 

2014). Thus the increase in competition from the tight to the loose cushions habitats is 

certainly not due to genetic variation between phenotypes, but rather to direct environmental 

effects (i.e. an environmental severity effect, Michalet et al. 2014b) with more benign 

conditions favourable to competition in the latter habitat (Bertness & Callaway 1994; Brooker 

& Callaghan 1998; Callaway et al. 2002; Brooker et al. 2005). To summarise, genetic effects 

enhanced competition with increasing stress, consistent to MacArthur & Wilson (1967), 

Tilman (1982) and Taylor et al. (1990). 

 

2.1.2- Differences in effects due to plasticity 

 

Using a transplantation competition experiment, I showed that the competitive effects of F. 

gautieri cushions decreased from the concave (low stress) to the convex (high stress) garden 

for both target survival and growth regardless cushion phenotype. This proves the plasticity of 

cushion effects as they are partially modified by (micro)-environmental changes. Moreover, 

loose cushions showed a higher plasticity in effects than tight cushions with a shift from 

competition to facilitation for the former with the increase in stress, but no such changes for 

the latter. The higher plasticity in the effects of loose than tight cushions goes along with the 

higher growth rate and lower stress-tolerance of the former as shown by trait measurements, 

the results of Le Bagousse-Pinguet et al. (2014b) and their contrasting field distributions. This 
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plasticity-induced increase in facilitation (or decrease in competition) with increasing stress is 

in line with Grimes’s (1974) model and the SGH (Bertness & Callaway 1994). Thus, for F. 

gautieri both genetic and plastic effects induce variation in competitive effects across 

phenotypes, but act in opposite directions with the former enhancing competition and the 

latter decreasing it with the increase in stress. 

 On the other hand, for O. cornuta, plasticity was not the driver of the differences in 

effects between tight (facilitative) and loose (competitive) phenotypes, even though it 

contributed to modifying the effects. In the field, the increase in stress from North (wet) to 

South (dry) exposures exacerbated the differences in effects, as tight competitive cushions 

become more competitive and loose facilitative cushions become more facilitative. Thus, as 

the effects of both phenotypes are not similarly affected by the increase in stress [i.e. an 

increase in competitive effects with increasing stress, consistent with Maestre & Cortina 

(2004)], plasticity could not be the cause of the difference in effects across phenotypes’ 

habitats within the same exposure. In parallel, the cessation of grazing did not cancel the 

difference in effects between phenotypes, in contrast to what was predicted if grazing was the 

driver of the difference in effects between phenotypes (see chapter 5); instead, the cessation of 

grazing increased the positive effects of both phenotypes, increasing facilitation for the loose 

cushions and decreasing competition for the tight ones. Thus, grazing contributed to the 

effects of tight and loose cushions, but was not the driver of the difference. This brings 

additional evidence that plasticity could not be the cause of the differences in effects between 

phenotypes. 

 To summarise, plasticity contributed to generating the difference in effects between 

the two phenotypes of F. gautieri but not of O. cornuta. This discrepancy arises likely from 

the difference in the way cushion traits of each species are affected by the increase in stress. 

For F. gautieri, the increase in stress from the concave to the convex garden enhanced 

competitive traits for both cushion phenotypes, as both tight and loose cushions were tighter 

(less penetrating cushions with shorter, thicker and higher density of leaves). However, for O. 

cornuta the increase in stress from North to South exposures had divergent effect on cushions 

thus enhancing facilitative traits for the loose cushions (higher penetration) and competitive 

traits for the tight ones (increase in cushion height). Moreover, for O. cornuta, the increase in 

stress from northern to southern exposures increased the pool of sensitive subordinate species, 

with 4 species (positively affected by loose cushions) in the North vs. 21 species (14 

negatively affected by both phenotypes and 7 positively affected by loose cushions) in the 

South. 

 

2.1.3- Consequences for the subordinate species 
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Several studies have reported greater abundance of other plant species inside cushions than 

outside (Cavieres et al. 2002; Arroyo et al. 2003), and many suggested that the ‘nursing 

effect’ should be more important in stressful conditions (Bertness & Callaway 1994; 

Holmgren et al. 1997; Brooker & Callaghan 1998), and that diversity should increase in semi-

stressful environments as competition decreases (Grime 1973) and facilitation increases 

(Hacker & Gaines 1997; Michalet et al. 2006). The consistent prediction to these models and 

findings of the literature would have been that for both F. gautieri and O. cornuta, tight 

cushions occurring in semi-stressful habitats would harbour more subordinate species than 

loose cushions occurring in low-stress habitats. This was not the case neither in my study 

systems nor in my experiments, as subordinate species richness and abundance were higher 

within loose than tight cushions. In fact, nursing effects may depend on the nurse’s identity 

and morphological characteristics (Callaway 2007).  

 I previously showed that tight F. gautieri cushions are genetically stronger effect-

competitors than loose cushions due to their more competitive traits (specifically, less 

penetrating cushions with thick leaves), and that plasticity effects reduce competition with 

increasing stress. Therefore, the decrease in species richness and abundance from the loose 

cushions (in low-stress habitats) to the tight ones (in semi-stressful habitats) is certainly not 

due to plasticity effects but rather to the genetically higher competitive effects of tight 

cushions, mainly expressed through interference, and thus impeding the recruitment of other 

species. This shows that diversity is more dependent on genetic than plasticity effects, and 

brings additional evidence that a genetic variation within a species may have consequences at 

the community level. 

 
2.2- Feedbacks of subordinate species on their ‘nurse’ 

 

For both foundation species, F. gautieri and O. cornuta, loose cushions with higher cover of 

subordinate species had significantly less flowers (or inflorescences) than tight cushions with 

low cover of subordinate species, thus suggesting a potential reproductive cost for loose 

cushions. Most researches, specifically in the purpose of ecological restoration, focused on the 

influence of nurse plant species on their dependent species, but not on the feedbacks of the 

‘nursed’ species on their nurse. However, understorey plants can have negative and/or 

positive effects on their nurse (Pugnaire et al. 1996; Barnes & Archer 1999; Holzapfel & 

Mahall 1999; Michalet et al. 2011; Cranston et al. 2012; Schöb et al. 2014). For example, 

Pugnaire et al. (1996) showed that Retama sphaerocarpa had positive effects on its 

understory species including Marrubium vulgare, and that these species had positive 
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feedbacks on their nurse, enhancing its biomass and branches nitrogen contents. In contrast, 

Barnes & Archer (1999) showed that Prosopis glandulosa var. glandulosa enhanced the 

establishment of understory species, but once established, understory species (specifically 

woody species) had negative feedbacks on their nurse’s growth and reproduction. Moreover, 

experiments in savannah in South Texas showed that nurse plants grew better when 

understory species were removed (see Ren et al. 2008). Consistently, our experimental 

removal of subordinate species within F. gautieri loose cushions (cf. chapter 3) showed a 

significant increase in inflorescences number, thus supporting the hypothesis that subordinate 

species had negative feedback effects on their nurse. Positive feedback effects of subordinates 

on F. gautieri loose cushions were not detected, but they may exist for other traits than 

flowering output, specifically for traits affecting cushion’s fitness permitting the persistence 

of loose cushion phenotype. 

 

3- Perspectives for future studies 

 
Each of my experiments stretched for only one or two years, but it would be interesting to 

perform longer-term experiments that might reveal farther thorough results, specifically for 

species with K-strategies which might need time to express their ‘real’ effect. Still, I have 

succeeded to demonstrate within a period of one to two years that both genetic and plasticity 

play a role in generating morphological differences within foundation species, and that 

community diversity depends primarily on the genetic effects of the foundation species rather 

than local changes in environmental conditions. In an evolutionary context, this latter point is 

of considerable importance, as most studies of plant-plant interactions stressed the role of the 

environment in conditioning the intensity or importance of interactions, underestimating the 

role of heritable variation between phenotypes which could have noticeable consequences at 

community and ecosystem levels (Dawkins 1982; Whitham et al. 2003, 2006, 2008; 

Crutsinger et al. 2006; Pakeman et al. 2006; Adams et al. 2011). 

 

A direct investigation of the genetic component of the phenotypic variation 

Even though transplant experiments are time-consuming, they still have the advantage of 

being simple, more or less easy to perform, requiring little technology and relatively 

inexpensive. Though, nowadays the advances of molecular biology allow a more direct study 

of genetic variation. Thus, it would be interesting to further investigate the molecular 

mechanisms underlying the phenotypic variation within the foundation species, using technics 
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such as exome sequencing or transcriptome comparisons, to double-check the genetic basis of 

this variation, specifically for long-lived species such as O. cornuta for which field transplant 

experiments are unrealistic. 

 

Is there a benefit for harbouring subordinate species? 

Studies assessing feedback effects of beneficiary species on their benefactor (i.e. effects of 

subordinate species on their nurse, Valiente-Banuet et al. 1991; Pugnaire et al. 1996; 

Holzapfel & Mahall 1999; Armas & Pugnaire 2005; Michalet et al. 2011; Cranston et al. 

2012; Schöb et al. 2013) have showed that the feedback effects can range widely from 

negative to positive. Bronstein (2009) stress the importance of evaluating the full nature of 

reciprocal effects of the subordinate species on their nurse for a deeper understanding of the 

evolutionary consequences of facilitation. In chapter 3, my colleagues and I found that 

subordinate species had negative feedbacks on their nurse, specifically on loose cushions with 

many subordinates (since tight cushions harbour very few if any subordinates). However, 

reciprocal effects of subordinate species were evaluated only for the number of flowers of the 

nurse, but other traits related to the nurse’s fitness (e.g. pollen quality and quantity) could 

show an opposite result (i.e. a positive feedback of subordinate species on the nurse). Thus, it 

would be valuable to test for the occurrence of positive community feedbacks. 
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